期刊文献+

(g′/g^2)展开法及其在耦合非线性Klein-Gordon方程中的应用 被引量:8

The(g′/g2)-Expansion Method and its Application to Coupled Nonlinear Klein-Gordon Equation
下载PDF
导出
摘要 应用(g′/g2)展开法构造出耦合非线性Klein-Gordon方程的精确解,得到了双曲函数通解、三角函数通解和有理函数通解三种通解.当双曲函数通解中的参数取特殊值时,得到了孤立波解.三角函数通解中引入一个参量后,可得到对应通解的周期波函数解. Using the (g,/g^2)-expansion method, exact solutions for coupled nonlinear Klein -Gordon equationarc constructed. As the result, the hyperbolic tunction solutions, trigonometric function solutions, and rational so-lutions with arbitrary parameters to the equation are obtained. When the arbitrary parameters in hyperbolic functionsolutions are taken as some special values, the solitary wave solutions can be obtained. By introducing a parameter,the trigonometric function solutions can be expressed as periodic wave solutions.
作者 陈继培 陈浩
出处 《华南师范大学学报(自然科学版)》 CAS 北大核心 2012年第2期63-66,共4页 Journal of South China Normal University(Natural Science Edition)
基金 国家自然科学基金项目(10874049) 国家基础研究重点项目(2007CB925204)
关键词 (g′/g2)展开法 耦合非线性Klein-Gordon方程 行波解 (g,/g^2)-expansion method coupled nonlinear Klein- Gordon equation travelling wave solution
  • 相关文献

参考文献11

  • 1WANG M L. Solitary wave solutions for variant Bouss- inesq equations [ J ]. Phys Lett A, 1995,199 : 169 - 172.
  • 2HIROTA R. Exact solution of the Korteweg- de vries e- quation for multiple collisions of solitons [ J ]. Phys Rev Lett, 1971,27 : 1192 - 1194.
  • 3FAN E G. Extended tanh - function method and its appli- cations to nonlinear equations [ J ]. Phys Lett A, 2000, 277:212 - 218.
  • 4LIU S K, FU Z T, LIU S D, et al. Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations [ J]. Phys Lett A, 2001,289:69 - 74.
  • 5HE J H', ABDOU M A. "New peri(Mic soiutions for nonlin- ear evolution equations using Exp -function method [ J ]. Cllaos, Solitons and Fractals, 2007,54 : 1421 - 1429.
  • 6ZHOU Y B, WANG M L, WANG Y L. Periodic wave so- lutions to a coupled KdV equations with variable coeffi- cients [J]. Phys Lett A, 2003,308:31 -36,.
  • 7WANG M L, LIA X Z, ZHANG J L. The (G'/G) - ex- pansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics [ J ]. Phys Lett A, 2008,372:417 - 423.
  • 8LI W A, CHEN H, ZHANG G C. The (to/g) -expan- sion method and its application to Vakhnenko equation [J]. Chinese Phys B,2009,18(2) :400 - 404.
  • 9TAJIRI M. On N - soliton solutions of coupled Higgs field equation [J]. J Phys Soc Jpn, 1983,52:2277 -2280.
  • 10HU X B, GUO B L, TAM H. Homoclinic orbits for the coupled Schrfidinger - Boussinesq equation and coupled Higgs equation [J]. J Phys Soc Jpn,2003,71 (1):189 - 190.

同被引文献56

  • 1陈宗蕴,黄念宁.光纤中暗孤子传输理论[J].物理学进展,1994,14(4):381-416. 被引量:2
  • 2扎其劳,斯仁道尔吉.利用F-展开法解广义Nizhnik-Novikov-Veselov方程组(英文)[J].内蒙古大学学报(自然科学版),2005,36(6):612-617. 被引量:2
  • 3蒋毅,陈渝芝,蒲志林.{1+1}维空间中变系数KdV方程组的精确解[J].四川师范大学学报(自然科学版),2007,30(6):670-673. 被引量:5
  • 4谢元喜,朱曙华.KdV-Burgers方程和KdV-Burgers-Kuramoto方程的精确解[J].安徽大学学报(自然科学版),2007,31(6):44-47. 被引量:3
  • 5FAN E G. Extended tanh-function method and its applications to nonlinear equations[J]. Phys Lett A,2000, 277(4 -5) : 212-218.
  • 6ZHOU Y B,WANG M L,WANG Y L. Periodic wave solutions to a coupled KdV equations with variable coefficients [J]. PhysLett A,2003,308(l) : 31 -36.
  • 7WANG M L. Solitary wave solutions for variant Boussinesq equations [J]. Phys Lett A, 1995 ,199(3) : 169 - 172.
  • 8HE J H, ABDOU M A. New periodic solutions for nonlinear evolution equations using Exp-function method [J]. Chaos,Solitonsand Fractals,2007 ,34(5) : 1421 -1429.
  • 9LIU S K,FU Z T,LIU S D,et al. Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equa-tions[J]. Phys Lett A,2001,289( SI - 2) : 69 -74.
  • 10HIROTA R. Exact solution of the Korteweg-de vries equation for multiple collisions of solitons[J]. Phys Rev Lett, 1971,27(18) : 1192 - 1194.

引证文献8

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部