期刊文献+

勾形磁场下重力水平和温度梯度对CdZnTe分离结晶生长的影响 被引量:1

Effects of Gravity Level and Temperature Gradient on CdZnTe Detached Solidification Growth under Cusp Magnetic Field
原文传递
导出
摘要 为了了解勾形磁场下相关参数对CdZnTe晶体生长的影响,利用有限元法对坩埚内的热量和动量传递过程进行了全局数值模拟。分析了不同的磁场强度下重力水平、壁面温度梯度对CdZnTe晶体生长过程的影响。结果表明:重力水平存在1个临界值,此时CdZnTe熔体内最大流函数最小,流动最弱。随着温度梯度逐渐增大,熔体内最大流函数也逐渐增大,熔体的流动越来越强,不利于晶体稳定生长。通过施加勾形磁场,能有效抑制熔体内的流动,有利于晶体的稳定生长,为地面条件下制备大尺寸CdZnTe晶体创造了条件。 In order to clarify the effects of parameters on the growth quality of CdZnTe crystal in a cusp magnetic field, the global simulation analyses for heat and momentum transfers in a crucible was carried out using a finite-element method. The effects of gravity level, temperature gradient at different magnetic field intensifies on the CdZnTe crystal growth were analyzed. The results showed that the gravity level had a critical value when the maximum stream function of CdZnTe melt was the minimum and there was the weaket melt flow. The maximum stream function and the melt flow increased with the temperature gradient increasing, resulting in an unstable crystal growth. The melt flow is suppressed by applying a cusp magnetic field, which favors the crystal steady growth and sets stage for the growth of large size CdZnTe crystal on the ground.
出处 《硅酸盐学报》 EI CAS CSCD 北大核心 2012年第6期899-904,共6页 Journal of The Chinese Ceramic Society
基金 国家自然科学基金(No.51076173)资助项目
关键词 分离结晶 勾形磁场 重力水平 温度梯度 碲锌镉晶体 全局模拟 detached solidification cusp magnetic field gravity level temperature gradient zinc cadmium telluride crystal globalsimulation
  • 相关文献

参考文献19

  • 1YUE J T,VOLTMER F W.Influence of gravity-free solidification on solute microsegregation [J].J Crys Growth,1975,29: 329–341.
  • 2WITT A F,GATOS H C,LICHTENSTEIGER M,et al.Crystal growth and steady-state segregation under zero gravity: InSb [J].J Electrochem Soc,1975,122: 276–283.
  • 3KESTIGIAN M,BOLLONG A B,DERBY J J,et al.Cadmium zinc telluride substrate growth,characterization and evaluation [J].J Electron Mater,1999,28: 726–731.
  • 4REGEL L L,WILCOX W R.A review of detached solidification in microgravity [J].Microgravity Sci Technol,1999,14: 152–166.
  • 5DUFFAR T,PARET-HARTER I,DUSSERRE P.Crucible de-wetting during Bridgman growth of semiconductors in microgravity [J].J Cryst Growth,1990,100: 171–184.
  • 6LARSON.Orbital processing of high-quality cadmium zinc telluride CdZnTe compound semiconductors [J].Microgravity News,1994,10: 1–6.
  • 7SYLLA L,DUFFAR T.Numerical simulation of temperature and pressure fields in CdTe growth experiment in the Material Science Laboratory (MSl) onboard the International Space Station in relation to dewetting [J].J Cryst Growth,2007,303: 187–192.
  • 8马雁冰,刘滔,邹鹏程,姜军,高文峰,罗川旭,林文贤.垂直Bridgman法生长碲锌镉晶体的数值模拟分析[J].红外技术,2009,31(4):240-245. 被引量:8
  • 9施凌云,张继军,王林军,黄健,唐可,彭兰.垂直Bridgman法生长Cd_(1-x)Mn_xTe晶体的缺陷研究[J].人工晶体学报,2011,40(3):543-547. 被引量:3
  • 10王焱,闵嘉华,梁小燕,张继军.垂直布里奇曼法生长CdZnTe晶体的径向溶质偏析之有限元分析法模拟[J].功能材料,2011,42(11):2073-2077. 被引量:3

二级参考文献50

  • 1黄晖,潘顺臣.碲锌镉晶片退火的显微Raman光谱分析[J].红外技术,2004,26(5):37-39. 被引量:6
  • 2刘宜华,张连生.稀释磁性半导体[J].物理学进展,1994,14(1):82-120. 被引量:18
  • 3刘夷平,黄为民,王经.利用焓-多孔介质法对垂直Bridgman生长CdTe的数值模拟[J].材料研究学报,2006,20(3):225-230. 被引量:6
  • 4刘洪涛,桑文斌,袁铮,闵嘉华,詹峰.低压布里奇曼法CdZnTe晶体生长及其热应力模拟[J].稀有金属材料与工程,2007,36(6):1016-1019. 被引量:3
  • 5Y. C. Liu, B. Roux, C. W. Lan. Effects of accelerated crucible rotation on segregation and interface morphology fo vertical Bridgman crystal growth: Visualization and simulation[J]. Crystal Growth, 2007, 304: 236-243.
  • 6A. Yeckel, F. P. Doty, et al. Effect of steady crucible rotation on segregation in high-pressure vertical Bridgman growth of cadmium zinc telluride[J]. Crystal Growth, 1999, 203: 87-!02.
  • 7C. Martinez-Tomas, V. Mufioz. CdTe crystal growth process by the Bridgman method: numerical simulation[J]. Crystal Growth, 2001, 222: 435-451.
  • 8K. Edwards, J. J. Derby. Understanding horizontal Bridgman shelf growth of cadmium telluride and cadmium zinc telluride I. Heat and momentum transfer[J]. Crystal Growth, 1997, 179: 120-132.
  • 9Nakagawa K, Maeda K, Takeuchi S. Observation of Dislocations in Cadmium Telluride by Cathodoluminescence Microscopy[ J]. Applied Physics Letters, 1979,34:574-575.
  • 10Gottsehalk H, Patzer G, Alexander H. Stacking Fault Energy and Ionicity of Cubic III-V Compounds [ J ]. Physical Status Solid A, 1978,45:207-217.

共引文献34

同被引文献12

  • 1王英伟,刘景和,程灏波,李建利.勾形磁场中直拉硅单晶浓度场的数值模拟研究[J].硅酸盐学报,2005,33(2):133-139. 被引量:6
  • 2宇慧平,隋允康,张峰翊,常新安,安国平.φ300mm的大直径直拉单晶硅勾形磁场下生长的数值模拟[J].无机材料学报,2005,20(2):453-458. 被引量:12
  • 3Duffar T,Paret-Harter I,Dusserre P. Crucible de-wetting during Bridgman growth of semiconductors in microgravi-ty[J].{H}Journal of Crystal Growth,1999,(1-2):171-184.
  • 4Regel L L,Wilcox W R. A review of detached solidifica-tion in microgravity[J].{H}Microgravity Science and Technology,1999.152-166.
  • 5Hirata H,Hoshikawa K. Silicon crystal growth in a cusp magnetic field[J].{H}Journal of Crystal Growth,1989.747-759.
  • 6Kakimoto K,Eguchi M,Ozoe H. Use of an inhomoge-neous for silicon crystal growth[J].{H}Journal of Crystal Growth,1997.442-449.
  • 7Ma Minya,Ogawa T,Watanabe M. Study on de-fects in CZ-Si crystals grown under three different cusp magnetic fields by infrared light scattering tomography[J].{H}Journal of Crystal Growth,1999.50-58.
  • 8Yoo C W,Kakimoto K,Ozoe H. Transient three-dimen-sional numerical computation for unsteady oxygen concen-tration in a silicon melt during a Czochralski process un-der a cusp-shaped magnetic field[J].{H}Journal of Crystal Growth,2001.622-630.
  • 9Liu L J,Kitashima T,Kakimoto K. Global analysis of effects of magnetic field configuration on melt-crystal in-terface shape and melt flow in Cz-Si crystal growth[J].{H}Journal of Crystal Growth,2005.2135-2139.
  • 10李友荣,魏东海,吴双应,彭岚.勾形磁场对硅单晶CZ生长过程的影响[J].工程热物理学报,2008,29(6):1021-1024. 被引量:3

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部