期刊文献+

K型Lipschitz映射非对称度量空间及其完备性

Asymmetric Space and Completeness of K-Lipschitz Mapping
下载PDF
导出
摘要 利用从非对称度量空间(X,d)到(R,dL)上的左K型Lipschitz映射和右K型Lipschitz映射构造了两类非对称度量空间,并分别证明了其上完备性和下完备性. Based on the left K-Lipschitz mapping and right K-Lipschitz mapping from asymmetric space(X,d) to(R,dL),two types of quasi-metric spaces are structured,and the upper and lower completeness of the two types of asymmetric spaces are proved respectively in this paper.
作者 李文
出处 《平顶山学院学报》 2012年第2期11-15,共5页 Journal of Pingdingshan University
基金 河南省教育厅自然科学研究计划项目(2010C110002)
关键词 非对称度量空间 左(右)K型Lipschitz映射 上(下)完备 asymmetric space left(right) K-Lipschitz mapping upper(lower) completeness
  • 相关文献

参考文献8

  • 1Künzi H P A.Nonsymmetric distances and their associatedtopologies:About the origins of basic ideas in the area ofasymmetric topology[M]//Aull C,Lowen R.Handbook ofthe History of General Topology.Kluwer:Dordrecht,2001:853-968.
  • 2García-Raffi L M,Romaguera S,Sánchez-Pérez E A.Sequence spaces and asymmetric norms in the theory ofcomputational complexity[J].Math Comput Model,2002,36(1):1-11.
  • 3Keimel K,Roth W.Ordered cones and approximation[M].Berlin:Springer-Verlag,1992.
  • 4Romaguera S,Sánchez-Pérez J V,Valero O.A mathemat-ical model to reproduce the wave field generated by conver-gent lenses[J].Appl Sci,2004(6):42-50.
  • 5Romaguera S,Sanchis M.Semi-Lipschitz functions andbest approximation in quasi-metric spaces[J].J ApproxTheory,2000,103(2):292-301.
  • 6Romaguera S,Sánchez-lvarez J M,Sanchis M.On bal-ancedness and D-completeness of the space of semi-Lipschitz functions[J].Acta Math Hungar,2008,120(4):383-390.
  • 7Romaguera S,Schellekens M.Quasi-metric properties ofcomplexity spaces[J].Topology Appl,1999,98:311-322.
  • 8Stojmirovic A.Quasi-metrics,similarities and Searches:aspects of geometry of protein datasets[D].Wellington:Victoria University of Wellington,2005.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部