期刊文献+

“三明治”双极膜的制备及其在降解含酚废水中的应用 被引量:5

Preparation of sandwich-type bipolar membrane and its application in the degradation of phenol
原文传递
导出
摘要 纳米TiO2上负载纳米Pt以制备纳米Pt/TiO2半导体光催化剂,壳聚糖(CS)经纳米Pt/TiO2改性后作为阴膜层材料,以羧甲基纤维素(CMC)作为阳膜层材料,分别用戊二醛与FeCl3对阴、阳膜层进行交联改性,制备了CMC-Pt/TiO2-CS双极膜,并将该复合膜作为降解高浓度含酚废水电解槽的隔膜。结果表明:Pt/TiO2光催化剂可促进双极膜中间层水的解离,大大降低双极膜的膜阻抗和电阻电压降(IR降);同时,Pt/TiO2光催化剂表面生成的羟基自由基(.OH)可直接作用于苯酚,使其彻底降解成无机小分子;紫外光照下在16.7mA.cm-2的电流密度下电解高浓度含酚废水80min后,CMC-Pt/TiO2-CS双极膜的苯酚降解率比CMC-TiO2-CS双极膜的苯酚降解率高12.7%;整个电解过程CMC-Pt/TiO2-CS双极膜的膜电阻电压降保持在0.9V。 Chitosan: (CS) was modified with nano-Pt/TiO2 semiconductor photocatalyst (CS - Pt/TiO2 ) which was prepared by doping Pt on TiO2 in advance. CMC - Pt/TiO2 - CS bipolar membrane was then prepared using carboxymethyl cellulose (CMC) and CS - Pt/TiO2 which were cross - linked by FeC13 and glutaraldehyde, respectively. Sandwich-typed CMC- Pt/TiO2 -CS bipolar membrane, the composite membrane with fine protons and hydroxyl ion-permeability, was then applied as the septum of the electrolytic cell in the degradation of phenol. Nano-Pt/TiO2 semiconductor photocatalyst can not only generate hydroxyl radicals ( · OH) which can directly degrade phenol into the small inorganic molecules, but also promote water splitting at the intermediate layer of CMC-Pt/TiO2 -CS bipolar membrane and greatly reduce the impedance and resistance(IR) of bipolar membrane. Compared CMC - Pt/TiO2 - CS bipolar membrane with CMC - TiO2 - CS bipolar membrane under UV irradiation, the degradation rate of the former is 12.7%higher than that of the latter after 80 min electrolysis at the current density of 16.7 mA · cm^- 2, while IR drop of CMC- Pt/TiO2 - CS is as low as 0.9 V.
出处 《复合材料学报》 EI CAS CSCD 北大核心 2012年第3期150-157,共8页 Acta Materiae Compositae Sinica
基金 国家自然科学基金(51073037)
关键词 “三明治”双极膜 壳聚糖 纳米Pt/TiO2 半导体光催化剂 苯酚 sandwich-type bipolar membrane chitosan nano-Pt/TiO2 semiconductor photocatalyst phenol
  • 相关文献

参考文献27

  • 1Male S, Ramirez P, Alcaraz A, et al. Handbook on bipolar membrane technology [M]. Enschede: Twente University Press, 2000.
  • 2徐铜文,汪志武,刘宁.双极膜的理论及应用展望[J].水处理技术,1998,24(1):20-25. 被引量:29
  • 3Hanada F, Hirayama K, Ohmura N, et al. Bipolar membrane and method for its production: US Patent, 5221455 [P]. 1993 -06-22.
  • 4Fu R Q, Xu T W, Wang G, et al. PEG catalytic water splitting in the interface of a bipolar membrane [J]. J Colloid Interface Sci, 2003, 263(2): 386-390.
  • 5Fu R Q, Xu T W, Yang W H, et al. Fundamental studies on the intermediate layer of a bipolar membrane: Part Ⅱ --Effect of bovine serum albumin (BSA) on water dissociation at the interface of a bipolar membrane [J]. J Colloid Interface Sei, 2004, 278(2): 318-324.
  • 6Fu R Q, Xu T W, Cheng Y Y, et al. Fundamental studies on the intermediate layer of a bipolar membrane: Part Ⅲ--Effect of starburst dendrimer PAMAM on water dissociation at the interface of a bipolar membrane [J]. J Membr Sci, 2004, 240 (1/2) : 141-147.
  • 7Fu R Q, Xue Y H, Xu T W, et al. Fundamental studies on the intermediate layer of a bipolar membrane: Part IV--Effect of polyvinyl alcohol (PVA) on water dissociation at the interface of a bipolar membrane [J].J Colloid Interface Sci, 2005, 285(1): 281-287.
  • 8Hosono T, Tanioka A. Effect of polymer composition in intermediate layer on water splitting in bipolar membranes [J].Polymer, 1998, 39(18): 4199-4204.
  • 9莫剑雄.双极膜工作电压的理论分析[J].水处理技术,1998,24(4):187-194. 被引量:14
  • 10Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode [J]. Nature, 1972, Z38: 37-38.

二级参考文献63

共引文献75

同被引文献47

引证文献5

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部