期刊文献+

移动机器人环境视觉小波稀疏压缩传感和识别 被引量:3

Wavelet Sparsity Based Compressive Sensing and Direct Recognition for Mobile Robot Vision
下载PDF
导出
摘要 视觉环境认知,尤其处理实时性,是自主移动机器人研究的重要内容之一,而减少视觉信息数据处理量是提高视觉感知处理性能的重要举措之一。基于小波稀疏和灰度共生矩阵,对两种典型环境图像的压缩传感信息进行了纹理特征提取与直接识别研究。结果表明:进行小波稀疏的两种压缩传感环境图像信息保留了原始图像特征,能够直接进行环境特征认知,在一定程度上说明了压缩传感信息直接特征识别的可行性。 Vision based environment perception, especially real-time processing performances, is a key research issue for autonomous mobile robot. This article aims to enhance the visual system speed by reducing the processing image data which is based on compressed sampling and direct feature recognition. Experiments of two typical environment images perception are carried out to verify its feasibility. The result shows it can recognize the two different environment images from the compressed information which is based on the orthogonal wavelet sparsity and gray level co-occurrence matrix.
出处 《传感技术学报》 CAS CSCD 北大核心 2012年第4期519-523,共5页 Chinese Journal of Sensors and Actuators
基金 江西省工业支撑计划项目(2008BA00400) 江西省教育厅科技项目(GJJ12005)
关键词 压缩传感 环境认知 小波稀疏 灰度共生矩阵 compressive sensing environment perception wavelet sparsity gray level co-occurrence matrix
  • 相关文献

参考文献11

二级参考文献207

共引文献321

同被引文献44

  • 1王向阳,杨红颖.一种基于小波包变换的纹理图像压缩算法[J].测绘学报,2004,33(3):239-243. 被引量:4
  • 2韩培友,张雯,郝重阳,罗冠.一种基于混合编码的图像纹理压缩方法[J].微电子学与计算机,2006,23(11):178-180. 被引量:7
  • 3肖潇,方勇纯,贺锋,马博军.未知环境下移动机器人自主搜索技术研究[J].机器人,2007,29(3):224-229. 被引量:14
  • 4DONOHO D. Compressed sensing [ J ]. IEEE Transactions on Information Theory,2006,52(d) :1289 -1306.
  • 5DOUAK F, BENZID R, BENOUDJIT N. Color image com- pression algorithm based on the DCT transform combined to an adaptive block scanning [ J]. Int J Electron Com- mun,2011,65 : 16 - 26.
  • 6LIU J ,WU X ,XIA J ,et al. Visual navigation of a novel e- conomical embedded multi-mode intelligent control system for powered wheelchair[ C ]//Advances in Neural Network Research and Applications, LNEE, Shanghai, China, 2010,67(6) :503 -511.
  • 7WANG Y, BERMAK A, Boussaid F. FPGA implementa- tion of compressive sampling for sensor network applica- tions[ C]//Proceedings of the 2nd Asia Symposium on Quality Electronic Design, Penang, Malaysia, 2010:5 - 8.
  • 8USMAN M,PRIETO C, ODILLE F, et al. A computation- ally efficient OMP-based compressed sensing reconstruc- tion for dynamic MRI[ J]. Physics in Medicine and Biolo- gy,2011,56 (7) :N99 - N114.
  • 9WANG M, YANG S, WAN Y, et al. High resolution radarimaging based on compressed sensing and fast Bayesian matching pursuit [ C ]//Proceedings of International Work- shop on Multi-Platform/Multi-Sensor Remote Sensing and Mapping, Xiamen, China, 2011 : 1 - 5.
  • 10ZHANG J, WANG J, XU G, et al. Multi slice and multi frame image reconstruction by predictive compressed sens- ing [ C ]//Proceedings of SPIE, Medical Imaging : Image Processing, San Diego, United States, 2012 : 16 - 20.

引证文献3

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部