期刊文献+

二阶常微分方程Neumann边值问题正解的全局分歧 被引量:1

Global Bifurcation of Positive Solutions of Neumann Boundary Value Problems for Second-order O.D.E.
原文传递
导出
摘要 本文考虑二阶常微分方程Neumann边值问题正解的存在性,其中f:[0,1]×R→R(R=(-∞,+∞))为连续函数.运用Dancer全局分歧定理建立了上述问题正解的全局分歧,并且获得了保证上述问题存在正解的若干最优充分条件. In this paper, we are concerned with the existence of positive solutions of the following second-order Neumann boundary value problem{u^ll=f(t,u),t∈(0,1),u^l(0)=0,u^l(1)=0 where f[0,1]×R→R(R=(-∞+∞))is continuous. By using Dancer's global bifurca-tion theorem, we estabish the global bifurcation of positive solutions of the above problem. Moreover, we obtain several optimal sufficient conditions which guarantee that the above problem has at least one positive solution.
出处 《应用数学学报》 CSCD 北大核心 2012年第3期515-528,共14页 Acta Mathematicae Applicatae Sinica
基金 国家自然科学基金(11061030)资助项目
关键词 NEUMANN边值问题 Dancer全局分歧定理 正解 最优条件 Neumann boundary value problems Dancer's global bifurcation theorem positive solutions optimal conditions
  • 相关文献

参考文献17

  • 1Sun J P, Li W T, Cheng S S. Three Positive Solutions for Second-order Neumann Boundary Value Problems. Appl. Math. Left., 2004, 17:1079-1084.
  • 2Sun Y, Sun Y P. Positive Solutions for Singular Semi-positone Neumann Boundary Value Problems. Electronic J. Differential Equations, 2004, 2004:1-8.
  • 3Sun Y, Cho Y J, O'Regan D. Positive Solutions for Singular Second-order Neumann Boundary Value Problems via A Cone Fixed Point Theorem. Appl. Math. Comput., 2009, 210:80-86.
  • 4Bensedik A, Bouchekif M. Symmetry and Uniqueness of Positive Solutions for a Neumann Boundary Value Problem. Appl. Math. Lett., 2007, 20:419-426.
  • 5Deimling K. Nonlinear Functional Analysis. New York: Springer-Verlag, 1985.
  • 6Li Z L. Existence of Positive Solutions of Superlinear Second-order Neumann Boundary Value Problem. Nonlinear Anal., 2010, 72:3216-3221.
  • 7Miciano Agnes R, Shivaji R. Multiple Positive Solutions for a Class of Semipositoue Neumann Twopoint Boundary Value Problems. J. Math. Anal. Appl., 1993, 178:102-115.
  • 8Bonanno G, D'Agui G. A Critical Point Theorem and Existence Results for a Nonlinear Boundary Value Problem. Nonlinear Anal., 2010, 72:1977-1982.
  • 9Ma R Y, Thompson B. Nodal Solutions for Nonlinear Eigenvalue Problems. Nonlinear Anal., 2004, 59:707-718.
  • 10Ma R Y, Thompson B. Multiplicity Results for Second-order Two-point Boundary Value Problems with Superlinear or Sublinear Nonlinearities. J. Math. Anal. Appl., 2005, 303:726-735.

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部