期刊文献+

基于脊波的多光谱和全色图像融合方法研究 被引量:7

Research of image fusion of multispectral and panchromatic images based on ridgelet transform
下载PDF
导出
摘要 应用了双线性插值的矩形阵列到径向阵列的变换算法,给出了一个离散脊波变换的实现方法,将其应用于多光谱图像与全色图像的融合算法中,通过清晰度、灰度方差、信息熵三个方面,将算法结果与小波变换的结果进行了对比,实验结果表明,相对于小波变换而言,脊波变换能更好地处理线和面的奇异性,而且由融合的结果来看,脊波变换得到的结果在清晰度等方面要高于小波变换。 Using the bilinear interpolation, this paper gives an implementation of discrete ridgelet transform. This implementation will be applied to the fusion of multispectral and panchromatic images. It is proved in the result of the experiment that the ridgelet transform, compared with wavelet transform through three aspects, can deal with the singularity of the point and plane better. What’s more, the output image of the algorithm of image fusion based on ridgelet transform is clearer than that of the algorithm based on wavelet transform.
出处 《计算机工程与应用》 CSCD 2012年第15期164-167,共4页 Computer Engineering and Applications
关键词 脊波变换 RADON变换 离散脊波变换 图像融合 ridgelet transform Radon transform discrete ridgelet transform image fusion
  • 相关文献

参考文献3

二级参考文献65

  • 1[5]Stephane Mallat.信号处理的小波导引[M].杨力华,等译.北京:机械工业出版社,2003.
  • 2[1]EJ Candes. Ridgelets:Theory and Applications[D].USA:Department of Statistics, Stanford University, 1998.
  • 3[2]E J Candes. Monoscale Ridgelets for the Representation of Images with Edges[ R]. USA: Department of Statistics, Stanford University, 1999.
  • 4[3]Candes E J, D L Donoho. Curvelets[R]. USA: Department of Statistics,Stanford University, 1999.
  • 5[4]E L Pennec, S Mallat. Image compression with geometrical wavelets[A]. In Proc. of ICIP' 2000 [ C ]. Vancouver, Canada, September,2000.661-664.
  • 6[5]M N Do, M Vetterli. Contourlets[ A ] .J Stoeckler, G V Welland. Beyond Wavelets [ C ]. Academic Press, 2002.
  • 7[7]D L Donoho,M Vetterli,R A DeVore, I Daubechies. Data compression and harmonic analysis [ J ]. IEEE Trans, 1998, Information Theory-44(6) :2435 - 2476.
  • 8[8]M Vetterli. Wavelets, approximation and compression [ J ]. IEEE Signal Processing Magazine,2001,18(5) :59 - 73.
  • 9[9]R A DeVore. Nonlinear approximation[ A].Acta Numerica[ M]. Cambridge University Press, 1998.
  • 10[10]D L Donoho. Sparse component analysis and optimal atomic decomposition[J]. Constructive Approximation, 1998,17:353 - 382.

共引文献266

同被引文献105

  • 1李光鑫,王珂.基于Contourlet变换的彩色图像融合算法[J].电子学报,2007,35(1):112-117. 被引量:51
  • 2李建林,俞建成,孙胜利.基于梯度金字塔图像融合的研究[J].科学技术与工程,2007,7(22):5818-5822. 被引量:13
  • 3Li X, Qin S Y. Efficient fusion for infrared and visible images based on compressive sensing principle[J]. IET Image Processing, 2011, 5(2): 141-147.
  • 4Chang X, Jiao L C, Liu F, et al. Multicontourlet-based adaptive fusion of infrared and visible remote sensing images[J]. IEEE Geoscience and Remote Sensing Letters, 2010, 7(3): 549-553.
  • 5Kong W W, Lei Y, Ni X L. Fusion techniques for grey:scale visible lightand infrared images based on non-subsampled contourlet transform and intensity hue saturation transform[J], lET Signal Processing, 2009, 5(1): 75-80.
  • 6Ulusoy I, Yuruk H. New method for the fusion of complementary information from infrared and visual images for object detection[J]. IETlmage Processing, 2011, 5(1): 36-48.
  • 7Miao Q G, Shi C, Xu P F, et al. A novel algorithm of image fusion using shearlets[J]. Optics Communications, 2011, 284(6): 1540-1547.
  • 8Tseng C C, Hwang T M. Quantum digital image processing algorithms[C]//16th IPPR Conference on Computer Vision, Graphics andImage Processing, Kinmen, 2003: 827-834.
  • 9Yuan S Z, Mao X, Chen L J, et al. Quantum digital image processing algorithms based on quantum measurement[J]. Optik, 2013, 124(23): 6386-6390.
  • 10Easley G, Labate D, Lim W Q. Sparse directional image representation using the discrete shearlet transform[J]. Applied and Computational Harmonic Analysis, 2008, 25(1): 25-46.

引证文献7

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部