期刊文献+

紫外衍射微透镜阵列的设计与制备 被引量:3

Design and fabrication of ultraviolet diffractive microlens array
原文传递
导出
摘要 为了提高紫外焦平面阵列的填充因子,可以通过微透镜阵列与紫外焦平面阵列的集成,以改善紫外焦平面阵列的探测性能。根据标量衍射理论设计了用于日盲型紫外焦平面阵列的128×128衍射微透镜阵列,其工作中心波长为350nm,单元透镜F数为F/3.56。采用组合多层镀膜与剥离的工艺方法制备了128×128衍射微透镜阵列,对具体的工艺流程和制备误差进行了分析,测量了衍射微透镜阵列的光学性能。实验结果表明:衍射微透镜阵列的衍射效率为88%,与理论值95%有偏差,制备误差主要来自对准误差和线宽误差。紫外衍射微透镜阵列具有均匀的焦斑分布,与紫外焦平面阵列单片集成能较好地改善器件的整体性能。 In order to enhance fill factor of ultraviolet staring focal plane array and improve its detection efficiency,it can be completed by the integration between diffractive microlens and ultraviolet focal plane array.Diffractive microlens arrays are designed using scalar diffraction theory for 128×128 solar-blind ultraviolet focal plane array.The working center wavelength is 350nm,the single lens F number is F/3.56.The microlens arrays are fabricated by combination multi-coating and stripping technique.The practical processes and fabrication errors are discussed,and the optical characteristics of 128×128 diffractive microlens arrays are measured.Experimental results show that the diffraction efficiency of the diffractive microlens array is 88% with a little deviation from the theoretical value 95%.The fabrication errors are from the alignment error and the line width error.Based on their uniform optical intensity distribution,the monolithic integration between diffractive microlens and ultraviolet focal plane array can improve the ultraviolet staring focal plane array device performance.
出处 《光学技术》 CAS CSCD 北大核心 2012年第3期263-267,共5页 Optical Technique
基金 国家高技术研究发展计划(863计划)专题课题资助项目(2006AA03Z348) 教育部科学技术研究重点项目(207033) 上海市科学技术委员会科技攻关计划项目(06DZ11415) 上海市教育委员会科研创新重点项目(10ZZ94) 上海市研究生创新基金资助项目(JWCXSL1001)
关键词 紫外 焦平面阵列 衍射微透镜阵列 单片集成 utraviolet FPA dffractive microlens mnolithic integration
  • 相关文献

参考文献8

二级参考文献23

  • 1杜春雷,林大键,冯伯儒,孙国良,徐平,郭履容.激光直接光刻制作微透镜列阵的方法研究[J].光学学报,1996,16(8):1194-1196. 被引量:8
  • 2徐平,张晓春,郭履容,郭永康,周祥,杜春雷,周明宝.二元光学元件制作误差分析与模拟[J].光学学报,1996,16(6):833-838. 被引量:20
  • 3杜春雷,林大健,周明宝,郭履容,郭永康.衍射微透镜列阵在Shack-Hartmann波前传感器中的应用[J].光子学报,1996,25(8):732-735. 被引量:1
  • 4[2]Shi Shou-yuan, Tao Xiao-dong, Yang Liu-qing,et al. Analysis of diffractive optical elements using a nonuniform finite-difference time-domain method[J]. Opt Eng, 2001,40(4):503-510.
  • 5[3]Mark S Mirotznik, Dennis W Prather, Joseph N Mait, et al.Three-dimensional analysis of subwavelength diffractive optical elements with the finite-difference time-domain method[J]. Applied Optics, 2000,39(6) :2871-2880.
  • 6[4]Nishihara H, Suhara T. Micro fresnel lenses[M]. Wolf: Progress in Optics XXIV, 1987.3-37.
  • 7[6]Liu Yu-ling, Lu Zhen-wu, Ren Zhi-bin, et al. Perfectly matched layer absorbing boundary conditions in rigorous vector analysis of axially symmetric diffractive optical elements[J]. Optics Communications,2003,223(8) :39-45.
  • 8[7]Shi Shou-yuan, Dennis W Prather. Vector-based plane-wave spectrum method for the propagation of cylindrical electromagnetic fields[J]. Optics Letters, 1999,24(21):1445-1447.
  • 9[8]徐运华.GaN基紫外焦平面接口技术研究[D].上海:中国科学院上海技术物理研究所,2007.
  • 10[1]Ridley B K Exact electron momentum-relaxation times in GaN associated with scattering by polar-optical phonona[J].J Appl Phys 1998,84(7 and 1):4020

共引文献25

同被引文献28

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部