期刊文献+

基于非均匀参数化的自由终端时间最优控制问题求解 被引量:2

FREE FINAL TIME OPTIMAL CONTROL BASED ON NON-UNIFORM CONTROL VECTOR PARAMETERIZATION
原文传递
导出
摘要 针对自由终端时间最优控制问题,提出了一种基于非均匀控制向量参数化的数值解法.将控制时域离散化为不同长度的时间段,各时间段长度作为新的控制变量.通过引入标准化的时间变量,原问题转化为均匀参数化的固定终端时间最优控制问题.建立目标和约束函数的Hamilton函数,通过求解伴随方程获得目标和约束函数的梯度,采用序列二次规划(SQP)获得数值解.针对两个经典的化工过程自由终端时间最优控制问题进行仿真研究,验证了所提出算法的可行性和有效性. A non-uniform control vector parameterization based numerical approach is proposed for free final time optimal control problems.The given time interval is divided into several time stages of varying lengths which are defined as new control variables.By introducing a normalized time variable,the original problem is transformed into a fixed final time optimal control problem which is solved by using uniform control vector parameterization.By constructing the Hamilton functions of objective and constraint functions,the adjoint equations are solved to obtain the gradients.The numerical solution is obtained by sequential quadratic programming(SQP) method.Simulation study on two optimal control problems of chemical process shows the feasibility and effectiveness of the proposed method.
出处 《系统科学与数学》 CSCD 北大核心 2012年第3期277-287,共11页 Journal of Systems Science and Mathematical Sciences
基金 国家自然科学基金(60974039) 国家科技重大专项(2011ZX05011) 中央高校基本科研业务费专项资金(27R1105018A) 山东省自然科学基金(ZR2011FM002)资助课题
关键词 自由终端时间 最优控制 非均匀参数化 SQP 化工过程 Free final time optimal control non-uniform control vector parameterization SQP chemical process
  • 相关文献

参考文献16

  • 1Vassiliadis V S, Pantelides C C and Sargent R W H. Solution of a class of multistage dynamic optimization problems. Ind. Eng. Chem. Res., 1994, 33(9): 2111-2122.
  • 2Chiou J P and Wang F S. Hybrid method of evolutionary algorithms for static and dynamic opti- mization problems with application to a fed-batch fermentation process. Computers and Chemical Engineering, 1999, 23(9): 1277-1291.
  • 3Kapadi M D and Gudi R D. Optimal control of fed-batch fermentation involving multiple feeds using differential evolution. Process Biochemistry, 2004, 39(11): 1709-1721.
  • 4Yamashita Y and Shima M. Numerical computational method using genetic algorithm for the optimal control problem with terminal constraints and free parameters. Nolinear Analysis, Theory, Methods and Applications, 1997, 30(4): 2285-2290.
  • 5Banga J R, Irzarry R and Seider W D. Stchastic optimization for optimal and model-predictive control. Computers and Chemical Engineering, 1998, 22(4-5): 603-612.
  • 6Banga J R, Balsa-Canto, Moles C G and Alonso A A. Dynamic optimization of bioprocesses: Efficient and robust numerical strategies. Journal of Biotechnology, 2005, 117(4): 407-419.
  • 7Zhang J M, Xie L and Wang S Q. Particle swarm for the dynamic optimization of biochemical processes. Computer Aided Chemical Engineering, 2006, 21: 497-502.
  • 8Gill P E, Jay L O, Leonard M W, Petzold L R and Sharma V. An SQP method for the optimal control of large-scale dynamic systems. Journal of Computational and Applied Mathematics, 2000, 120(1-2): 197-213.
  • 9Basla Canto E, Banaga J R and Alonso A A. Restricted second order information for the solution of optimal control problems using control vector parameterization. Journal of Process Control, 2002, 12(2): 243-255.
  • 10Arpornwichanop A and Shomchoam N. Studies on optimal control approach in a fed-batch fermen- tation. Korean Journal of Chemical Engineering, 2007, 24(1): 11-15.

同被引文献19

  • 1张兵,杜文莉,颜学峰,钱锋.时间最短控制问题求解的分级优化策略[J].华东理工大学学报(自然科学版),2007,33(1):100-103. 被引量:2
  • 2Xiang X L, Jiang Y. Optimal controls of systems governed by a class of integro-diferential equa- tions. Journal of Guizhou University (Natural Sciences), 2003, 20(4): 335-342.
  • 3Wu C Z, Teo K L, Zhao Y, Yan W Y. An optimal control problem involving impulsive integrod- ifferential systems. Optimization Methods and Software, 2007, 22(3): 531-549.
  • 4Kaya C Y, Noakes J L. Computational method for time-optimal switching control. Journal of Optimization Theory and Applications, 2003, 117(1): 69-92.
  • 5Lee Y C E, Fung E H K, Lee H W J. Control parametrization enhancing technique and simulation on the design of a flexible rotating beam. Journal of Optimization Theory and Applications, 2008, 136: 247-259.
  • 6Teo K L, Goh C J, Wong K H. A Unified Computational Approach to Optimal Control Problems. New York: Longman, 1991.
  • 7Teo K L, Goh C J. A computational method for a class of optimal relaxed control problems. Journal of Optimization Theory and Applications, 1989, 60(1): 117-132.
  • 8Teo K L, Jennings L S. OptimM control with a cost on changing control. Journal of Optimization Theory and Applications, 1991, 68(2): 335-356.
  • 9Mehne H H, Borzabadi A H. A numerical method for solving optimal control problems using state parametrization. Numer. Algor., 2006, 42: 165-169.
  • 10Wu C Z, Teo K L, Zhao Y, Yah W Y. Solving an identification problem as an impulsive optimal parameter selection problem. Computers and Mathematics with Applications, 2005, 50: 217-229.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部