期刊文献+

黏性系数依赖于密度的可压缩磁流体方程组解的存在性 被引量:1

Research of Existence for Compressible MHD Equations with Density-Dependent Viscosities
下载PDF
导出
摘要 在假设初始密度ρ0有界(即0<m<ρ0<M)的情况下,通过构造逼近解序列,利用紧致性讨论序列收敛的方法,研究了RN(N≥2)上黏性系数依赖于密度的可压缩磁流体方程组在临界Besov空间中的局部解的存在性问题。 Under the assumption that the initial density is bounded away from zero,the local existence in some critical Besov spaces for the compressible magneto-hydrodynamic equations with density-dependent viscosities in RN(N≥2)is established by constructing a sequence of smooth solutions.And using a compactness argument,the convergence of the sequence is proved.
出处 《中山大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第3期44-51,共8页 Acta Scientiarum Naturalium Universitatis Sunyatseni
基金 国家自然科学基金资助项目(11071057) 河南省科技创新人才计划资助项目(2009HASTIT007) 六盘水师范学院青年基金资助项目(lpssy201115)
关键词 可压缩磁流体方程组 存在性 临界Besov空间 Bony仿积分解 compressible magneto-hydrodynamic equations; existence; critical Besov spaces; Bony paraproduct decomposition
  • 相关文献

参考文献18

  • 1GERBEAU J F, LEBRIS C. Existence of solution for a density-dependent magnetohydrodynamic equation [ J ]. Adv Differential Equations, 1998, 2 (3) : 427 - 452.
  • 2DESJARDINS B, LEBRIS C. Remarks on a nonhomoge- neous model of magnetohydrodynamics [ J ]. Differential and Integral Equations, 1998, 11 (3) : 377 - 394.
  • 3ABIDI H, HMIDI T. Rrsuhats d'existence dans des es- paces critiques pour le syst~me de la MHD inhomogbne [J]. Ann Math Blaise Pascal, 2007, 14: 103- 148.
  • 4ABIDI H, PAICU M. Global existence for the MHD sys- tem in critical spaces [ J ]. Proc Roy Soc Edinburgh Sect A, 2008, 138:447-476.
  • 5HU X P, WANG D H. Global existence and large-time behavior of solutions to the three-dimensional equations of compressible magnetohydrodynamic flows [ J ]. Arch Ra- tion Mech Anal ,2010,197:203 - 238.
  • 6LU M, DU Y, YAO Z A. Blow-up criterion for compres- sible MHD equations [ J]. J Math Anal Appl, 2011, 379 : 425 -438.
  • 7BIAN D F, YUAN B Q. Well-posedness in super critical Besov spaces for the compressible MHD equations [ J ]. International Journal of Dynamical Systems and Differenti- al Equations, 2011, 3 : 383 - 399.
  • 8DANCHIN R. Local theory in critical spaces for compres- sible viscous and heat-conductive Gases [ J]. Comm Par- tial Differential Equations, 2001, 26: 1183- 1233.
  • 9DANCHIN R. Global existence in critical spaces for com- pressible Navier-Stokes equations [ J ]. Invent Math, 2000, 141 : 579 - 614.
  • 10DANCHIN R. On the uniqueness in critical spaces for compressible Navier-Stokes equations [ J ]. Nonlinear Differential Equations Appl, 2005, 12 : 111 - 128.

二级参考文献1

共引文献2

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部