期刊文献+

正则保序压缩变换半群的秩 被引量:7

On the rank of the semigroup of the regular order-preserving and compressing transformations
下载PDF
导出
摘要 设自然数n≥4,Xn={1,2,…,n},证明了Xn上的正则保序压缩全变换半群的秩为2. Let n≥4,Xn={1,2,…,n},in this paper the rank of the semigroup of the regular order-preserving and compressing transformations on Xn is proved to be 2.
作者 徐波
出处 《贵州师范大学学报(自然科学版)》 CAS 2012年第3期52-54,共3页 Journal of Guizhou Normal University:Natural Sciences
基金 国家自然科学基金(10861004)
关键词 保序 压缩 变换半群 order-preserving compression semigroup rank
  • 相关文献

参考文献11

  • 1N Ruskuc. On the ranks of completely 0-simple semigroups[J].Mathematical Proceedings of the Cambridge Philosophical Society,1994,(116):325-338.
  • 2G U Garba. On the idempotent ranks of certain semigroups of order-preserving transform-ations[J].Portugaliae Mathematica,1994,(51):185-204.
  • 3A Umar. On the ranks of certain finite semigroups of order-decreasing transformations[J].Portugaliae Mathematica,1996,(53):23-34.
  • 4X L Yang. On the nilpotent ranks of the factors oforder- preserving transformation semi-groups[J].Semigroup Forum,1998,(03):331-340.
  • 5J M Howie,M I M Ribeiro. Rank properties in finite semigroups[J].Communications in Algebra,1999,(11):5333-5347.
  • 6I Levi,S Seif. Combinatorial techniques for rank and idempotent rank ofcertain finite semigroups[J].Proceedings of the Edinburgh Mathematical Society,2002,(45):617-630.
  • 7A Cherubini,J M Howie,B. Piochi. Rank and status in semigroup theory[J].Communications in Algebra,2004,(32):2783-2801.doi:10.1081/AGB-120037416.
  • 8G Barnes,I Levi. On idempotent ranks of semigroups of partial transformations[J].Semigroup Forum,2005,(70):81-96.
  • 9I Levi. Nilpotent ranks of semigroups of partial transformations[J].Semigroup Forum,2006,(72):459-476.
  • 10徐波,冯荣权,高荣海.一类变换半群的秩[J].数学的实践与认识,2010,40(8):222-224. 被引量:48

二级参考文献8

  • 1Barnes G and Levi I. On idempotent ranks of semigroups of partial transformations[J]. Semigroup Forum, 2005(70): 81-96.
  • 2Cherubini A, Howie J M and Piochi B. Rank and status in semigroup theory[J]. Commun Algebra, 2004(32): 2783-2801.
  • 3Garba G U. On the idempotent ranks of certain semigroups of order-preserving transformations[J]. Portugal Math, 1994(51): 185-204.
  • 4Gomes G M S and Howie J M. On the ranks of certain semigroups of order-preserving transformations[J]. Semigroup Forum, 1992(45): 272-282.
  • 5Gomes G M S and Howie J M. On the ranks of certain finite semigroups of transformations[J]. Math Proc Camb Phil Soc, 1987(101): 395-403.
  • 6Howie J M and Ribeiro M I M. Rank properties in finite semigroups[J]. Commun Algebra, 1999(27): 5333-5347.
  • 7Howie J M and McFadden R B. Idempotent rank in finite full transformation semigroups[J]. Proc Roy Soc Edinburgh Sect A, 1990(155): 161-167.
  • 8Levi I. Nilpotent ranks of semigroups of partial transformations[J]. Semigroup Forum, 2006(72): 459-476.

共引文献47

同被引文献57

  • 1HaoBoYANG XiuLiangYANG.Maximal Subsemigroups of Finite Transformation Semigroups K(n,r)[J].Acta Mathematica Sinica,English Series,2004,20(3):475-482. 被引量:19
  • 2裴惠生,邹定宇,李连兵.降序且保序的有限全变换半群(英文)[J].信阳师范学院学报(自然科学版),2006,19(4):373-377. 被引量:5
  • 3徐波.关于有限保序部分一一变换半群的极大逆子半群[J].贵州师范大学学报(自然科学版),2007,25(1):72-73. 被引量:10
  • 4GOMES G M S, HOWIE J M. On the ranks of certain semigroups of order-preserving transformations E J ]. Semigroup Forum, 1992, 45 ( 1 ) :272-282.
  • 5GARBA G U. On the idempotent ranks of certain semigroups of order-preserving transformationsE J]. Portugaliae Mathemati- ca, 1994, 51(2) :185-204.
  • 6XIULIANG YANG. Non-group ranks in finite full transformation semigroups[J]. Semigroup Forum, 1998, 57:42-47.
  • 7HOWIE J M, RUSKUC N, Higgins P M. On relative ranks of full transformation semigroupsE J]. Communication in Algebra, 1998, 26(3) :733-748.
  • 8ARAUJO J, Schneider C. The rank of the endomorphism monoid of a uniform partitionE J]. Semigroup Forum, 2009, 78: 498-510.
  • 9GREEN J A. On the structure of semigroups [J]. The Ann of Math, 1951, 54( 1 ) : 163-172.
  • 10HOWIE J M. Fundamentals of semigroup theory [ M]. Oxford: Oxford University Press, 1995.

引证文献7

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部