期刊文献+

均衡完全三部图K_(3(n))的线性3-荫度

Linear 3-arboricity of balanced complete tripartite graph Κ_(3(n))
下载PDF
导出
摘要 考虑均衡完全三部图K3(n)的线性3-荫度.利用路分解的方法给出了K3(n)的线性3-荫度la3(Κ3(n))当n≡1,2,3(mod 4)时的比较紧的上界,利用线性k-荫度的基本理论分别得到了它们的下界,进而得到了特殊情况下均衡完全三部图K3(n)的线性3-荫度的确切值. The linear 3-arboricity of balanced complete tripartite graph K3(n) is studied.It is obtained that the sharp upper bounds of linear 3-arboricity la3(K3(n)) when n≡1,2,3(mod 4) by using the method of path-factorization,as well as the lower bounds by using the elementary theory of linear k-arboricity.And then the exact values of linear 3-arboricity of balanced complete tripartite graph K3(n) in some special cases are determined.
出处 《天津师范大学学报(自然科学版)》 CAS 2012年第2期10-17,共8页 Journal of Tianjin Normal University:Natural Science Edition
基金 天津师范大学引进人才基金资助项目(5RL066)
关键词 线性k-森林 线性k-荫度 均衡完全三部图 linear k-forest linear k-arboricity balanced complete tripartite graph
  • 相关文献

参考文献17

  • 1BONDY J A. Graph Theory with Applications[M].New York:Macmillan Publishing Company,1976.
  • 2HABIB M,PEROCHE B. La k-arboricité linéaire des arbres[J].Discrete Mathematics,1983.307-317.
  • 3HABIB M,PEROCHE B. Some problems about linear arboricity[J].Discrete Mathematics,1982.219-220.
  • 4CHANG G J. Algorithmic aspects of linear k-arboricity[J].Taiwan Residents Journal of Mathematics,1999.73-81.
  • 5CHANG G J,CHEN B L,FU H L. Linear k-arboricities on trees[J].Discrete Applied Mathematics,2000.281-287.
  • 6BERMOND J C,FIUQUET J L,HABIB M. On linear k-arborieity[J].Discrete Mathematics,1984.123-132.
  • 7JACKSON B,WORMALD N C. On the linear k-arboricity of cubic graphs[J].Discrete Mathematics,1996.293-297.
  • 8THOMASSEN C. Two-coloring the edges of a cubic graph such that each monochromatic component is a path of length at most 5[J].Journal of Combinatorial Theory,1999.100-109.
  • 9ALDRED R E L,WORMALD N C. More on the liear k-arboricity of regular graphs[J].Australasian Journal of Combinatorics,1998.97-104.
  • 10ALON N,TEAGUE V J,WORMALD N C. Linear arboricity and linear k-arboricity of regular graphs[J].Graphs and Combinatorics,2001.11-16.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部