摘要
对于一类连续时间的非线性动态系统x=f(x)+Bu+d,当系统中的非线性函数f(x)满足有界或线性增长条件(具有未知的增长系数)时,首先证明了f(x)中的x落入一紧集中,然后根据径向基函数网络或模糊系统的逼近性质,给出了两种自适应调节器的设计方法.利用李亚普诺夫稳定性理论,证明了控制算法是全局稳定的,闭环系统的状态是一致最终有界的。
For a class of nonlinear continuous time systems =f(x)+Bu+d, when the nonlinear function f(x) is bounded or satisfies linear growth condition with unknown growth coefficient, we first prove that x falls into a compact set, then two adaptive regulators are proposed based on the approximation capability of radial basis function networks or fuzzy systems. According to the Lyapunov stability theory, the control algorithms are proved to be globally stable, the state of closed\|loop system is uniformly ultimately bounded and the control law is continuous.
出处
《系统工程理论与实践》
EI
CSCD
北大核心
2000年第2期8-14,共7页
Systems Engineering-Theory & Practice
基金
国家自然科学基金!(69674 0 0 1)
山东省自然科学基金! (Q99G0 4 )
关键词
径向基函数网络
模糊系统
非线性连续系统
adaptive regulation
radial basis function networks
fuzzy systems
bounded
linear growth