期刊文献+

非线性二阶周期边值问题的正解(英文)

Positive periodic solutions to nonlinear second order periodic boundary value problems
下载PDF
导出
摘要 周期边值问题是非线性分析中的一个重要课题,它在许多实际问题中有着广泛的应用.论文应用锥拉伸和锥压缩不动点定理研究非线性二阶周期边值问题正解的多重性.以一类线性问题的格林函数为工具,证明了周期边值问题至少有两个正周期解的结论. Periodic boundary value problem was an important subject in the nonlinear analysis and had extensive applications in some practical problems. In this paper, we investigated the multiplicity of positive solutions to some nonlinear second order periodic boundary value problem by using the fixed point theorem of cone expansion and compression. By the aid of the Green function of a class of linear problem, we obtained some existence results of at least two positive periodic solutions to periodic boundary value problem.
机构地区 河海大学理学院
出处 《安徽大学学报(自然科学版)》 CAS 北大核心 2012年第3期8-12,共5页 Journal of Anhui University(Natural Science Edition)
基金 Supported by National Natural Science Foundation of China(10871059)
关键词 周期解 不动点 非线性微分方程 periodic solutions fixed point cone nonlinear differential equation
  • 相关文献

参考文献13

  • 1Cheng S S,Zhang G.Existence of positive periodic solutions for non-autonomous functional equations[J].ElectronDiff Equa,2001,59:1-8.
  • 2Li Y,Zhu L.Positive periodic solutions of nonlinear functional differential equations[J].Appl Math Lett,2004,156:329-339.
  • 3Liu Y.Multiple solutions of periodic boundary value problems for first order differential equations[J].Comput ApplMath,2007,54:1-8.
  • 4Liu B,Liu L,Wu Y.Existence of nontrivial periodic solutions for a nonlinear second order periodic boundary valueproblem[J].Nonlinear Anal,2010,72:3337-3345.
  • 5Li Y.Positive periodic solutions of nonlinear second order ordinary differential equations[J].Acta Math Sinica,2002,45(3):481-488(in Chinese).
  • 6Erbe L H,Li S,Wang H.Multiple positive solutions of some boundary value problems[J].Math Anal Appl,1994,184:640-648.
  • 7Zhang Z,Wang J.On exisitince and mulitiplicity of positive solutions to periodic boundary value problems forsingular nonlinear second order differential equation[J].Math Anal Appl,2003,281:99-107.
  • 8Bai Z,Wang Y,Ge W.Triple positive solutions for a class of two-point boundary value problem[J].ElectronDifferential Equations,2004,6:1-8.
  • 9Wu J,Wang Z C.Two periodic solutions of second-order neutral functional differential equations[J].Journal ofMathematical Analysis and Applications,2007,329:677-689.
  • 10戚仕硕,马海霞.二阶及2n阶周期边值问题的多个正解(英文)[J].安徽大学学报(自然科学版),2011,35(6):1-8. 被引量:1

二级参考文献12

  • 1Lakshmikantham V. PBVPs of first and second order differential equations[ J J. J Appl Math Simulat, 1989,2 : 131 - 138.
  • 2Yao Q. Positive solutions of nonlinear second order periodic boundary value problems [ J ]. Applied Mathematics Letters, 2007,20 : 583- 590.
  • 3Wang W, Luo Z. Positive periodic solutions of second order differential equations [ J ]. Applied Mathematics Letters, 2007,20 : 266- 271.
  • 4Guo D J, Lakshmikantham V. Nonlinear problems in abstract cones [ M ]. San Diego: Academic Press, 1988.
  • 5Guo D J. Nonlinear functional analysis[ M]. 2nd Edition. Jinan: Shandong Sci Tech Press,2001.
  • 6Nieto J J. Existence of periodic solutions ibr first order ditterentia[ equations L J J ~ Apphed Mathemattcs and Computation, 1984,15:221-232.
  • 7Nieto J J, Ivarez-Noriega N. Periodic boundary value problems for nonlinear first order ordinary differential equations [ J ]. Acta Mathematica Hungarica ,' 1996,71 : 49- 58.
  • 8Jiang D, Nieto J J, Zuo W. On monotone method for first and second order PBVPs and periodic solutions of functional differential equations [ J ]. Journal of Mathematical Analysis and Applications,2004,289:691-699.
  • 9Dhage B C, Graef J R. First order functional differential equations with priodic boundary conditions [ J 1. Applicable Analysis ,2007,86(2) :205-221.
  • 10Tisdell C C. Existence of solutions to first order periodic boundary value problems [ J ]. Journal of Mathematical Analysis and Applications, 2007,323 : 1325-1332.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部