摘要
In this paper,the bi-functional catalyst system composed of molecular sieve(MCM-41) immobilized oligomerization catalyst(C25H17Cl2N3·FeCl2) and copolymerization catalyst(Et(Ind)2ZrCl2) was employed in the in situ copolymerization of ethylene aiming to prepare the Linear low density polyethylene(LLDPE).In this paper,we mainly argued the regular pattern of the in situ copolymerization of ethylene in limited nano-space and compared it with that happening in free space.The impact of variance of the reaction temperature,Fe/Zr value and the A1/(Fe+Zr) value on the activity of the in situ copolymerization of ethylene has also been introduced.Furthermore,the degree of branching,thermal properties and crystalline changes of the obtained polymerization products prepared from different reactivity were investigated.
In this paper,the bi-functional catalyst system composed of molecular sieve(MCM-41) immobilized oligomerization catalyst(C25H17Cl2N3·FeCl2) and copolymerization catalyst(Et(Ind)2ZrCl2) was employed in the in situ copolymerization of ethylene aiming to prepare the Linear low density polyethylene(LLDPE).In this paper,we mainly argued the regular pattern of the in situ copolymerization of ethylene in limited nano-space and compared it with that happening in free space.The impact of variance of the reaction temperature,Fe/Zr value and the A1/(Fe+Zr) value on the activity of the in situ copolymerization of ethylene has also been introduced.Furthermore,the degree of branching,thermal properties and crystalline changes of the obtained polymerization products prepared from different reactivity were investigated.
基金
Supported by the National "Eleventh Five-Year" Technology Support Program Project (2006BAD10B08)
Natural Science Foundation of Hebei Province (E2009000448)