期刊文献+

基于脉冲神经网络的人体动作识别

Human Action Recognition Based on Spiking Neural Networks
下载PDF
导出
摘要 为了提高动作识别的速度和准确性,本文研究了从初级视觉皮层V1中提取特征表示人体动作的问题,提出了采用integrate and fire(I&F)脉冲神经元模拟V1阶段神经元的方法。通过对脉冲输出进行分析,取脉冲序列平均发放率的熵,作为表征人体动作的特征向量,送入分类器进行分类。经过在Weizmann数据库下的测试,试验结果表明,本文的方法比Esco-bar[1]的方法更加有效. In order to improve the accuracy of human action recognition and accelerate the recognition speed,this paper investigates the question of extracting feature from visual cortex for representing human actions,and proposes that integrate and fire neuron model was used to simulate the V1 neurons.According to the characteristic of spiking output,the entropy of mean firing rate of each neuron formed a feature vector,and Support Vector Machine(SVM) was used to classify different act.We compared our results with Escobar model.on the Weizmann action database.As a conclusion,we convinces that this method is more effective than the model of Escobar for human action recognition.
出处 《现代科学仪器》 2012年第2期29-32,36,共5页 Modern Scientific Instruments
基金 国家自然科学基金项目(60972158)
关键词 初级视觉皮层 脉冲神经元 脉冲序列 Visual cortex Spiking neural model Spike trains
  • 相关文献

参考文献14

  • 1Escobar M J,Kornprobst P. Action recognition with a bio-inspired feedforward Spiking Networks[J]. Int J Ccomput Vis, 2009, 82:284-301.
  • 2Blake R, Shiffrar M. Perception of human motion [J]. Annu. Rev. Psychol, 2007, 58:47- 73.
  • 3雷庆,李绍滋.动作识别中局部时空特征的运动表示方法研究[J].计算机工程与应用,2010,46(34):7-10. 被引量:10
  • 4Bayerl P,Neumann H.Disambiguating visual motion through contextual feedback Modulation {J]. Neural C 200 omputation,4, 16(10), 2041-2066.
  • 5Bayerl P, Neumann,H.A Fast Biologically Inspired Algorithm for Recurrent Motion Estimation[J].IEEE Trans. Pattern Anal. Mach Intell., 2007,29(2),246-260.
  • 6Mingolla E, Todd J T, Normal J F.The Perception of the Globally Coherent Motin[J] Vision Research ,1992, 32 ,1015- 1031.
  • 7Simoncelli E P,Heeger D.A Model of Neuronal Responses in Visual Area MT[J].Vision Research, 1998, 38(5), 743- 761.
  • 8Jhuang H, Serre T, Wolf L, Poggio T. A Biologically Inspired Systerm for Action Recognition [J].In proceedings of 3rd Latin American robotic symposium, 2007, 1-8.
  • 9许敏丰,韩力群.基于脉冲耦合神经网络的手掌纹理识别[J].现代科学仪器,2010,27(6):71-74. 被引量:2
  • 10Thorpe S.A highly Efficient Coding Scheme for Neural Networks[J].In Parallel Processing in neuroal systems and computers, 1990, 91-94.

二级参考文献19

  • 1邬向前,王宽全,张大鹏.一种用于掌纹识别的线特征表示和匹配方法(英文)[J].软件学报,2004,15(6):869-880. 被引量:28
  • 2Turaga P.Machine recognition of human activities: A survey[J]. IEEE Transactions on Circuits and Systems for Video Technology,2008,18(11).
  • 3Laptev I, Marszalek M, Schmid C, et al.Learning realistic human actions from movies[C]//CVPR,2008.
  • 4Laptev I.On space-time interest points[C]//IJCV, 2005, 64: 107-123.
  • 5Laptev I,Lindeberg T.Local descriptors for spatio-temporal recognition[C]//First International Workshop on Spatial Coherence for Visual Motion Analysis.[S.l.]:Springer,2004.
  • 6Dollar P, Rabaud V, Cottrell G, et al.Behavior recognition via sparse spatio-temporal features[C]/NS-PETS,2005.
  • 7Sun Ju, Wu Xiao.Hierarchical spatio-temporal context modeling for action recognition[C]//CVPR, 2009.
  • 8Zhu Guang-yu, Xu Chang-sheng.Action recognition in broadcast tennis video[C]//Proc of the 18th International Conference on Pattern Recognition,2006.
  • 9Scovanner P, Ali S, Shah M.A 3-Dimensional SIFT descriptor and its application to action recognition[C]//Proceedings of the 15th International Conference on Multimedia,2007.
  • 10Blank.Weizmann dataset [EB/OL].http ://www.wisdom.weizmann.ac. il/-vision/Space TimeActions.html#Classification%20Database.

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部