期刊文献+

基于Q学习的任务调度问题的改进研究 被引量:3

Improvement of task scheduling based on Q-learning
下载PDF
导出
摘要 论文针对协同工作中的任务调度问题,建立了相应的马尔可夫决策过程模型,在此基础上提出了一种改进的基于模拟退火的Q学习算法。该算法通过引入模拟退火,并结合贪婪策略,以及在状态空间上的筛选判断,显著地提高了收敛速度,缩短了执行时间。最后与其它文献中相关算法的对比分析,验证了本改进算法的高效性。 In this paper,a Markov Decision Process model is built to describe the problem of task scheduling in cooperative work,and a improved Q-learning algorithm based on Metropolis rule is present to solve the problem.In the algorithm,Metropolis rule combined with Greedy Strategy is introduced and a selection in state space is adopted,which accelerate the convergence,and shorten the running time.Finally,the algorithm is compared to some related algorithms of other papers,and the algorithm performance is analyzed as well,which indicates the efficiency of the improved Q-learning algorithm.
出处 《图学学报》 CSCD 北大核心 2012年第3期11-16,共6页 Journal of Graphics
基金 国家自然科学基金资助项目(61070124) 合肥工业大学自主创新资助项目(2012HGZY0017)
关键词 任务调度 Q学习 强化学习 模拟退火 task scheduling Q-learning reinforcement learning simulated annealing
  • 相关文献

参考文献14

  • 1冷晟,魏孝斌,王宁生.柔性工艺路线蚁群优化单元作业调度[J].机械科学与技术,2005,24(11):1268-1271. 被引量:5
  • 2Xie Rong,Rus D,Stein C. Scheduling multi-task agents[A].2001.260-276.
  • 3耿汝年,须文波.基于自适应选择遗传算法的任务调度与分配[J].计算机工程,2008,34(3):43-45. 被引量:13
  • 4Deepa R,Srinivasan T,Miriam D D H. An efficient task scheduling technique in heterogeneoussystems using self-adaptive selection-based genetic algorithm[A].2006.343-348.
  • 5Loukopoulos T,Lampsas P,Sigalas P. Improved genetic algorithms and list scheduling techniques for independent task scheduling in distributed systems[A].2007.67-74.
  • 6Wei Yingzi,Zhao Mingyang. Composite rules selection using reinforcement learning for dynamic job-shop scheduling robotics[A].2004.1083-1088.
  • 7Shah K,Kumar M. Distributed independent reinforcement learning (DIPL) approach to resource management in wireless sensor networks[A].2007.1-9.
  • 8陈圣磊,吴慧中,肖亮,朱耀琴.协同设计任务调度的多步Q学习算法[J].计算机辅助设计与图形学学报,2007,19(3):398-402. 被引量:11
  • 9Liu Xiaoping,Shi Hui,Lu Qiang. Visual task-driven based on task precedence graph for collaborative design[A].2007.246-251.
  • 10王雪松,田西兰,程玉虎,易建强.基于协同最小二乘支持向量机的Q学习[J].自动化学报,2009,35(2):214-219. 被引量:20

二级参考文献60

共引文献63

同被引文献21

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部