摘要
Rare earth iron garnets R3Fe5-xMnxO12(R=Pr, Nd, Sm, Eu) were prepared through mild hydrothermal me- thod. The initial alkalinity of solutions was thought to play an important role in governing the content of Mn. The effect of substitution Fe^3+ ions by Mn^3+ ions on magnetic properties was investigated. The saturation magnetizations of Mn-doped samples are larger than that of corresponding parent compounds due to the moment of Mn^3+ ion being smaller than that of Fe^3+. It is clearly shown that incorporation of Mn^3+ gives rise to significant variations in the Curie temperature. With increasing of Mn content x, Curie temperatures reduced sharply for the garnets, which could be explained by the exchange interaction between a-d Fe^3+ being reduced in these compounds.
Rare earth iron garnets R3Fe5-xMnxO12(R=Pr, Nd, Sm, Eu) were prepared through mild hydrothermal me- thod. The initial alkalinity of solutions was thought to play an important role in governing the content of Mn. The effect of substitution Fe^3+ ions by Mn^3+ ions on magnetic properties was investigated. The saturation magnetizations of Mn-doped samples are larger than that of corresponding parent compounds due to the moment of Mn^3+ ion being smaller than that of Fe^3+. It is clearly shown that incorporation of Mn^3+ gives rise to significant variations in the Curie temperature. With increasing of Mn content x, Curie temperatures reduced sharply for the garnets, which could be explained by the exchange interaction between a-d Fe^3+ being reduced in these compounds.
基金
Supported by the National Natural Science Foundation of China(Nos.90922034,20771042)