期刊文献+

Electron Interaction Among the Noncovalently Engineered Graphene-methylene Blue Nanocomposites

Electron Interaction Among the Noncovalently Engineered Graphene-methylene Blue Nanocomposites
下载PDF
导出
摘要 The electron interaction among the noncovalently engineered graphene-methylene blue(MB) nanocompo- site with a dipolar pull-push hybrid model was studied. The π-π interaction between reduced graphene oxide(rGO) and MB molecule was studied by 1HNMR spectroscopy. The electrochemical investigation indicates MB has a stronger electron transfer interaction with rGO than with GO. The ability of graphene-MB nanocomposites to undergo photoinduced electron transfer was confirmed from the capability of the nanocomposites coated electrode to generate photocurrent in a photoelectrochemical cell. The role of graphene as electron acceptor in the opto-electronic assembly was discussed. The electron interaction among the noncovalently engineered graphene-methylene blue(MB) nanocompo- site with a dipolar pull-push hybrid model was studied. The π-π interaction between reduced graphene oxide(rGO) and MB molecule was studied by 1HNMR spectroscopy. The electrochemical investigation indicates MB has a stronger electron transfer interaction with rGO than with GO. The ability of graphene-MB nanocomposites to undergo photoinduced electron transfer was confirmed from the capability of the nanocomposites coated electrode to generate photocurrent in a photoelectrochemical cell. The role of graphene as electron acceptor in the opto-electronic assembly was discussed.
出处 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2012年第3期520-523,共4页 高等学校化学研究(英文版)
关键词 GRAPHENE Methylene blue Electron interaction PHOTOCURRENT Graphene Methylene blue Electron interaction Photocurrent
  • 相关文献

参考文献21

  • 1Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Zhang Y., Dubonos S. V., Grigorieva I. V., Firsov A. A., Science, 2004, 306, 666.
  • 2Xu Y, X., Zhao L., Bai H., Hong W. J., Li C., Shi G. Q., J. Am. Chem. Soc., 2009, 131, 13490.
  • 3Stankovich S., Dikin D. A., Dommett G. H. B., Kohlhaas K. M., Zimney E. J., Stach E. A., Piner R. D., Nguyen S. T., Ruoff R. S., Nature, 2006, 442, 282.
  • 4Stoller M. D., Park S. J., Zhu Y. W., An J. H., Ruoff R. S., Nano Lett., 2008, 8, 3498.
  • 5Li D., Muller M. B., Gilje S., Kaner R. B., Wallace G. G., Nat. Nanotech., 2008, 3, 101.
  • 6Chen Y., Zhang X., Yu P., Ma Y. W., Chem. Commun., 2009, 30, 4527.
  • 7Xu Y. X., Bai H., Lu G. W., Li C., Shi G. Q., J. Am. Chem. Soc., 2008, 130, 5856.
  • 8Geim A. K., Novoselov K. S., Nat. Mater., 2007, 6, 183.
  • 9Liu Z. F., Liu Q., Huang Y., Ma Y. F., Yin S. G., Zhang X. Y., Sun W., Chen Y. S., Adv. Mater., 2008, 20, 3924.
  • 10Hummers W. S., Offeman R. E., J. Am. Chem. Soc., 1958, 80, 1339.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部