期刊文献+

具温度边界条件的单相Stefan问题解的存在唯一性 被引量:1

Existence and Uniqueness of Global Solutions for One-Phase Stefan Problem with Temperture Boundary Condition
下载PDF
导出
摘要 证明了一种带有温度边界条件的Stefan问题解的存在唯一性.首先利用Green恒等式将问题转化为等价的积分方程组,由压缩映照原理得到了问题的局部解.再利用延拓方法得到了整体解. Existence and uniqueness of global solutions for a one-phase Stefan problem are proved in this paper. The author firstly translates the Stefan problem into an equivalent system of integral equations with the help of Green Identity and has the existence and uniqueness of local solutions to the integral equations by contraction mapping theorem, then applies the continuation method to get the existence and uniqueness of global solutions.
作者 闫德宝
机构地区 菏泽学院数学系
出处 《中央民族大学学报(自然科学版)》 2012年第2期36-40,共5页 Journal of Minzu University of China(Natural Sciences Edition)
基金 山东省教育厅资助项目(No.2011GG049) 菏泽学院科研项目(No.XYJJKJ-3)
关键词 STEFAN问题 存在唯一性 压缩映照原理 整体解 Stefan problem existence and uniqueness contraction mapping theorem global solution
  • 相关文献

参考文献10

  • 1FRIEDMAN A,KINDERLEHRET. A one Phase Stefan Problem[J]. Indiana Univ. Math. J. 1975,24:1005 -1035.
  • 2HANZAWA E I. Classical solutions of the Stefan Problem[J]. Tohoku. Math. Journ,1981,33 :297 -335.
  • 3A. C. BRIOZZO, D. A. TARZIA. Existence and Uniqueness for one-phase Stefan problems of non-classical heat equations with temperature boundary condition at a fixed face[J]. ]EJDE,2006,21 :1 - 16.
  • 4A. C. BRIOZZO, D. A. Tarzia. Convergence of the solution of the one-phase Stefan problem when the heat transfer coefficient goes to zero[J]. J. Math. Anal. Appl. ,2012,389( 1 ) :138 -146.
  • 5A. C. BRIOZZO,D. A. TARZIA. A Stefan problem for heat equations with a convective condition [ J]. A. Math. and compu. , 2010,217:4051 - 4060.
  • 6A. C. BRIOZZO, D. A. TARZIA. Existence,uniqueness and a explicit solution for a one-phase Stefan problem for a non- classical heat equation[ J 1. Inter. Series of Numerical Math. ,2006,154:117 -124.
  • 7闫德宝.一类新型二相Stefan问题的研究[J].河南科学,2010,28(12):1495-1500. 被引量:3
  • 8FRIEDMANA著,夏宗伟译,《抛物型偏微分方程》[M].北京:科学出版社,1984.
  • 9M.A. BORODIN. Stefanproblem[J]. J. Math. Sci. 2011,178(1):17-54.
  • 10J. CRANK. Free and moving boundary problems[ M ]. Clarendon Press,Oxford, 1984.

二级参考文献2

共引文献2

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部