期刊文献+

高分辨力哈特曼传感器的快速波面重构和拼接 被引量:3

Fast wave-front reconstruction and stitching for high definition Hartmann wave-front sensor
下载PDF
导出
摘要 建立哈特曼传感器的模型,证明在高空间分辨力下,可以采用Hudgin模型进行波面重构,避免了采用Fried模型带来的复杂性。对哈特曼子孔径缺失破坏连续性的问题进行了分析,介绍了相应的边缘处理算法。完成了基于离散傅里叶变换的波面重构算法数值模拟,实现了波面的无损重构。针对实际应用中输入波面在被遮挡处不连续的问题,提出了基于最小二乘解的拼接方案,实现了非连续波面拼接。分析了影响波面重构速度的主要因素,提出了提高波面重构性能的方法。 A physical model for high definition Hartmann wave-front sensor is build up,and the feasibility of using Hudgin model instead of Fried model in high definition Hartmann wave-front sensors is proved.The boundary problem caused by unknown sub-aperture slope is analyzed,and the corresponding edge processing method is introduced.The process of wave-front reconstruction based on discrete Fourier transform is numerically simulated,and the lossless reconstruction is achieved.In practical applications,the input wave-front may be discontinuous at the edge of the obscured part.Thus a wave-front stitching method using least square solution is proposed.The main factors which slow down the speed of reconstruction are studied,and the way to improve the reconstruction performance is proposed.
出处 《强激光与粒子束》 EI CAS CSCD 北大核心 2012年第6期1335-1338,共4页 High Power Laser and Particle Beams
基金 国家高技术发展计划项目
关键词 哈特曼波前传感器 波面重构 离散傅里叶变换 波面拼接 Hartmann wave-front sensor wave-front reconstruction discrete Fourier transform wave-front stitching
  • 相关文献

参考文献9

  • 1Poyneer L A, Gavel D T, Brase J M. Fast wave front reconstruction in large adaptive optics systems with use of the Fourier transform[J].J Opt Soc Am A, 2002, 19(10) :2100-2111.
  • 2Freischlad K R, Koliopoulos C L. Modal estimation of a wave front from difference measurements using the discrete Fourier transform[J]. J Opt Soc Am A, 1986, 3(11):1852-1861.
  • 3Poyneer L A. Advanced techniques for Fourier transform wave-front reconstructionEC2//Proe of SPIE. 2003, 4839: 1023-1034.
  • 4Correial C, Conanl J M, Kulcsdr C, et al. Fourier-domain wave-front reconstruction for large adaptive optical systems[C]//Proc of the An- nual Meeting of the French Society of Astronomy and Astrophysics. 2007: 25-30.
  • 5Fried D L. Least-square fitting a wave-front distortion estimate to an array of phase-difference measurements[J]. J Opt Soc Am A, 1977, 67 (3) :370-375.
  • 6Correia C, Kulcsdr C, Conan J M, et al. Hartmann modelling in the discrete spatial-frequency domain= Application to real time reconstruc- tion in adaptive optics[C]//Proe of SPIE. 2008, 7015: 51-62.
  • 7周璐春,王春鸿,李梅,石强.基于FPGA技术的波前斜率处理方法[J].光电工程,2002,29(3):28-31. 被引量:8
  • 8Moreland K, Angel E. The FFT on a GPU[C]//Proc of the ACM SIGGRAPH/Eurographics Workshop on Graphics Hardware. 2003: 112- 119.
  • 9肖江,胡柯良,邓元勇.基于CUDA的矩阵乘法和FFT性能测试[J].计算机工程,2009,35(10):7-10. 被引量:33

二级参考文献7

共引文献39

同被引文献34

  • 1刘章文,任天怡,古天祥.3维数据的置信区间及异常数据的修复[J].计算机集成制造系统,2005,11(4):597-600. 被引量:5
  • 2张强 姜文汉 许冰.用于Hartmann-shack波前探测器的区域法算法研究.强激光与粒子束,1998,10(2):229-232.
  • 3Fried D L. Least-square fitting a wavefront distortion estimate to an array of phase-difference measurements[J]. J Opt Soc Am, 1977, 67(3): 370-375.
  • 4Hudgin R H. Wavefront reconstruction for compensated imaging [J]. J Opt Soc Am, 1977, 67(3): 375-378.
  • 5Southwell W H. Wavefront estimation from wavefront slope measurement[J]. J Opt SoeAm, 1980, 70(8): 998-1006.
  • 6Ageorges N, Dainty C 2000 Laser Guide Star Adaptive Optics for Astronomy (Berlin: Springer Netherlands) p23.
  • 7闫仁忠,阎吉祥,俞信.1996,自适应光学(北京:国防工业出版社),第328页.
  • 8Gavel D 2008 Proceedings of SPIE 7015 70150J. 1.
  • 9王锋,叶一东,鲁燕华,颜宏,何丽,廖原.2011,强激光与粒子束,22 1829.
  • 10刘杰,王建立,吕天宇,孙敬伟,董磊,2013.中国科学,43 318.

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部