期刊文献+

迭代法求解实对称矩阵绝对值方程 被引量:14

An Iterative Method for Absolute Value Equations Associated with Real Symmetric Matrices
原文传递
导出
摘要 给出了实对称矩阵绝对值方程的一个求解方法.当假设矩阵A的特征值的绝对值大于1时,绝对值方程存在唯一解,进而把绝对值方程问题转化为线性互补问题,利用不动点原理,给出了求解此类绝对值方程问题的迭代算法,并证明该算法经过有限次迭代之后收敛到原问题的一个最优解.数值实验表明此方法是有效的. Absolute value equations (AVE) are an NP-hard problem in its general form. A new method for solving absolute value equation problems with real symmetric matrices is proposed in this paper. Firstly, the existence and uniqueness theorem of the solution to the absolute value equation is presented under the condition that the absolute value of eigenvalue of A exceeds one. Next, based on the above, the absolute value equation is transformed into a linear complementarity problem. Then, using the fixed-point princi- ple, an iterative method is obtained for the absolute value equation. It is proved that this method conver- ges to an optimal solution of the original problem after finite iterations. Finally, some numerical examples are given to indicate that the method is feasible and effective.
作者 雍龙泉
出处 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第5期32-37,共6页 Journal of Southwest University(Natural Science Edition)
基金 陕西省教育厅自然科学研究项目(09JK381)
关键词 绝对值方程 线性互补问题 不动点原理 absolute value equation linear complementarity problem fixed-point principle
  • 相关文献

参考文献17

  • 1JIRI R. Systems of Linear Interval Equations [J]. Linear Algebra and Its Applications, 1989, 126: 39-78.
  • 2JIRI R. A Theorem of the Alternatives for the Equation Ax+BI x l =b [J]. Linear and Muhilinear Algebra, 2004, 52(6) : 421-426.
  • 3MANGASARIAN O L, MEYER R R. Absolute Value Equations [J]. Linear Algebra and its Applications, 2006, 419(5) : 359-367.
  • 4MANGASARIAN O L. Absolute Value Programming [J]. Computational Optimization and Aplications, 2007, 36(1): 43-53.
  • 5MANGASARIAN O L. Absolute Value Equation Solution Via Concave Minimization [J]. Optim Lett, 2007, 1(1) :3-8.
  • 6MANGASARIAN O L. A Generlaized Newton Method for Absolute Value Equations [J]. Optim Lett, 2009, 3 (1): 101-108.
  • 7MANGASARIAN O L. Knapsack Feasibility as an Absolute Value Equation Solvable by Successive Linear Programming [J]. Optim Lett, 2009, 3(2): 161-170.
  • 8HU Shen-long, HUANG Zheng-hai. A Note on Absolute Value Equations [J]. Optim Lett, 2010, 4(3): 417-424.
  • 9OLEG P. On Equivalent Reformulations for Absolute Value Equations [J]. Computational Optimization and Applica- tions, 2009, 44(3): 363-372.
  • 10JIRI R. An Algorithm for Solving the Absolute Value Equation [J]. Electronic Journal of Linear Algebra, 2009, 18:589-599.

二级参考文献10

  • 1寇述舜.关于线性互补问题解的存在性[J].应用数学和力学,1995,16(7):641-644. 被引量:12
  • 2佟文廷.广义正定矩阵[J].数学学报,1984,27(6):801-801.
  • 3Mangasarian O L, Meyer R R. Absolute value equations [J]. Linear Algebra and Its Applications, 2006, 419(2-3): 359-367.
  • 4Mangasarian O L. Absolute value programming [J]. Computational Optimization and Aplications, 2006, 36(1): 43-53.
  • 5Mangasarian O L. Absolute value equation solution via concave minimization[J]. Optim Lett, 2007, 1(1): 3-8.
  • 6Mangasarian O L. A generlaized newton method for absolute value equations[J]. Optim Lett, 2009, 3(1): 101-108.
  • 7Mangasarian O L. Knapsack feasibility as an absolute value equation solvable by successive linear programming [J]. Optim Lett, 2009, 3 (2): 161-170.
  • 8Kojima M, Megiddo N, Yoshise A. A unified approach to interior point algorithms for linear complementary problem [C]. Lecture Notes in Computer Science 538. Berlin: Springer-Verlag, 1991.
  • 9Wright S J. An infeasible-interior-point algorithm for linear complementarity problems[J]. Mathematical Programming, 1994, 64: 29-51.
  • 10Horst R, Pardalos P M. Handbook of global optimization[M]. Dordreeht: Kluwer Academic Publishers, 1994.

共引文献14

同被引文献144

  • 1雍龙泉,邓方安.线性互补问题中矩阵正定性判别的2点注记[J].吉首大学学报(自然科学版),2009,30(1):33-35. 被引量:6
  • 2杨仕椿,吴文权.关于广义正定矩阵的进一步推广[J].数学的实践与认识,2005,35(5):146-150. 被引量:11
  • 3雍龙泉,刘三阳.内点算法中一类非奇异矩阵的证明及其应用[J].数学的实践与认识,2006,36(2):258-261. 被引量:10
  • 4程云鹏.矩阵论[M].西安:西北工业大学出版社,2001..
  • 5余德浩,汤华中.微分方程数值解法[M].北京:科学出版社,2004:220-228.
  • 6JIRI R. Systems of Linear Interval Equations [J]. Linear Algebra and Its Applications, 1989(126): 39-78.
  • 7J IRI R. A Theorem of the Alternatives for the Equation Ax+B|x|= b[J]. Linear and Multilinear Algebra 2004, 52 (6) : 421-426.
  • 8MANGASARIAN O L, MEYER R R. Absolute Value Equations [J]. Linear Algebra and its Applications, 2006, 419(5):359-367.
  • 9MANGASARIAN O L. Absolute Value Programming[J]. Computational Optimization and Aplications, 2007, 36(1): 43-53.
  • 10MANGASARIAN O L. Absolute Value Equation Solution via Concave Minimization [J]. Optim Lett, 2007, 1(1): 3-8.

引证文献14

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部