期刊文献+

基于Gabor小波与LBP直方图序列的人脸年龄估计 被引量:10

Age Estimation of Facial Images Based on Gabor Wavelet and Histogram Sequence of LBP
下载PDF
导出
摘要 提出了一种基于Gabor小波和局域二值模式(Local binary pattern,LBP)直方图序列的人脸年龄估计方法。首先对人脸图像提取多方向与多尺度的Gabor幅值域图谱(Gabor magnitude maps,GMMs);然后采用基于局部特征的LBP算子对GMMs编码,并对之分块,由各子块的直方图序列来描述人脸;为进一步降低人脸特征维数,再对人脸直方图序列特征应用主成分分析(PCA);最后使用支持向量机回归(SVR)的LOPO策略对人脸年龄库进行训练和测试。实验结果表明,该方法可以较为快速有效地对人脸图像进行年龄估计。 A method for age estimation of facial images is proposed based on the combination of the Gabor wavelets and the histogram sequence of the local binary pattern (LBP). The facial images are firstly filtered by the multi-orientation and multi-scale Gabor before Gabor magnitude maps (GMMs) are extracted. Then the local neighbor pattern on GMMs is extracted by LBP based on local characteristics and the characteristics are divided into several sub-blocks to calculate the histogram sequences. To further reduce the dimension of facial features, Principal component analysis (PCA) is applied to the histogram sequences. Finally, a leave-one-personout (LOPO) test scheme of the support vector regression (SVR) is used to train and test the face age database. Experimental results show that the method can estimate the age of human faces quickly and effectively.
作者 黄兵 郭继昌
出处 《数据采集与处理》 CSCD 北大核心 2012年第3期340-345,共6页 Journal of Data Acquisition and Processing
基金 天津市科技支撑计划(10ZCKFGX00700)资助项目
关键词 支持向量机回归 局域二值模式 主成分分析 年龄估计 support vector regression(SVR) local analysis(PCA) age estimation binary pattern(LBP) principal component
  • 相关文献

参考文献10

  • 1Lanitis A, Dragannova C, Christodoulou C, Com- paring different classifiers for automatic age estima- tion[J]. IEEE Trans on Systems, Man and Cyber- netics, 2004, 34(1): 621-628.
  • 2Geng Xin, Zhou Zhihua, Smith M K. Automatic age estimation based on facial aging patterns[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2007, 12(29) :2234-2240.
  • 3Guany R, Nabiyev V V. Automatic age classification with LBP[C]//Proceeding of the 23rd International Symposium on Computer and Information Science. Turkey, Istanbul : IEEE, 2008 : 1-4.
  • 4Guo Guodong, Mu Guowang, Fu Yun, et al. Hu- man age estimation using bio-inspired features[C]// Computer Vision and Pattern Recognition. NCCU, NC,USA:IEEE, 2009 : 112-119.
  • 5Thomas S, Lior W, Stanley B, et al. Robust object recognition with cortex-like mechanisms [J]. IEEE Transaction on pattern Analysis and Machine Intelli- gence,2007, 29(3) :411-426.
  • 6Ojala T, Pietikainen M, Maenpaa T. Multiresolu- tion gray-scale and rotation-invariant texture classifi- cation with local binary pattern[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2002, 24 (7) : 971-986.
  • 7张文超,山世光,张洪明,陈杰,陈熙霖,高文.基于局部Gabor变化直方图序列的人脸描述与识别[J].软件学报,2006,17(12):2508-2517. 被引量:82
  • 8Webb A R. Statistical pattern recognition [M]. Hoboken:John Wiley & Sons Inc, 2002 : 318-344.
  • 9Chang Chihchung, Lin Chihjen. LIBSVM: a library for support vector machines[EB/OL], http ://www. csie. ntu. edu. tw/-cjlin/libs-vm, 2010-04-01.
  • 10FGnet. FG-NET aging database[EB/OL], httpz// www. irgnet, rsun-it, corn, 2002-08-25.

二级参考文献21

  • 1Phillips PJ,Grother P,Micheals RJ,Blackburn DM,Tabassi E,Bone JM.Face recognition vendor test 2002 results.Evaluation Report,2003.
  • 2Phillips PJ,Syed HM,Rizvi A,Rauss PJ.The FERET evaluation methodology for face-recognition algorithms.IEEE Trans.on Pattern Analysis and Machine Intelligence,2000,22(10):1090-1104.
  • 3Brunelli R,Poggio T.Face recognition:features vs.templates.IEEE Trans.on Pattern Analysis and Machine Intelligence,1993,15(10):1042-1053.
  • 4Turk M,Pentland A.Face recognition using eigenfaces.In:Negahdaripour S,et al.,eds.Proc.of the IEEE Conf.on Computer Vision and Pattern Recognition.Maui:IEEE Computer Society Press,1991.586-591.
  • 5Belhumer P,Hespanha P,Kriegman D.Eigenfaecs vs fisherfaces:Recognition using class specific linear projection.IEEE Trans.on Pattern Analysis and Machine Intelligence,1997,19(7):711-720.
  • 6Porat M,Zeevi Y.The generalized Gabor scheme of image representation in biological and machine vision.IEEE Trans.on Pattern Analysis and Machine Intelligence,1988,10(4):452-468.
  • 7Wiskott L,Fellous JM,Kruger N,Malsburg C.Face recognition by elastic bunch graph matching.IEEE Trans.on Pattern Analysis and Machine Intelligence,1997,19(7):775-779.
  • 8Liu CJ,Wechsler H.Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition.IEEE Trans.on Image Processing,2002,11(4):467-476.
  • 9Shan SG.Study on some key issuses in face recognition[Ph.D.Thesis].Beijing:Institute of Computing Technology,the Chinese Academy of Sciences,2004
  • 10Vapnik VN,Write; Zhang XG,Trans.The Nature of Statistical Learning Theory.Beijing:Tsinghua University Press,2000.

共引文献81

同被引文献137

  • 1胡斓,夏利民.基于人工免疫识别系统的年龄估计[J].计算机工程与应用,2006,42(26):186-188. 被引量:4
  • 2夏国恩,曾绍华,金炜东.支持向量回归机在铁路客运量时间序列预测中的应用[J].计算机应用研究,2006,23(10):180-182. 被引量:13
  • 3寇晓丽,刘三阳.基于模拟退火的粒子群算法求解约束优化问题[J].吉林大学学报(工学版),2007,37(1):136-140. 被引量:28
  • 4Zhang David,Guo Zhenhua,Lu Guangming,et al.An online system of multispectral palmprint verification[J].IEEE Trans on Instrumentation and Measurement,2010,59(2):480-490.
  • 5Ding Yuhang,Zhuang Dayan,Wang Kejun.A study of hand vein recognition method[C] // IEEE Int Confon Mechatronics and Automation.[S.l.] :IEEE 2005,4:2106-2110.
  • 6Kang Wenxiong,Deng Feiqi.Vein recognition method base on angle matrix of feature point[C] //27th Chinese Control Conference.[S.l.] :IEEE,2008:569-572.
  • 7Qian Xiaohua,Guo Shuxu,Li Xueyan,et al.Fingervein recognition based on the score level moment invariants fusion[C] // Int Conf on Computational Intelligence and Software Engineering.[S.l.] :IEEE,2009:1-4.
  • 8Yang Jinfeng,Yang Jinli,Shi Yihua.Finger-vein segmentation based on multi-channel even-symmetric gabor filters[C] // IEEE Int Conf on Intelligent Computing and Intelligent Systems.[S.l.] :IEEE,2009(4):500-503.
  • 9Kumar A,Prathyusha K V.Personal authentication using hand vein triangulation and knuckle shape[J].IEEE Trans on Image Processing,2009,18 (9):2127-2136.
  • 10Fischer M,Rybnicek M,Tjoa S.A novel palm vein recognition approach based on enhanced local gabor binary patterns histogram sequence[C] // 19th Int Conf on Systems,Signals and Image Processing (IWSSIP).[S.l.] :IEEE,2012:429-432.

引证文献10

二级引证文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部