期刊文献+

非对称微腔研究进展 被引量:3

Research Progress of Asymmetric Microcavity
原文传递
导出
摘要 最近几年,具有非圆对称边界形状的光学微腔,即非对称微腔,已经成为微纳光子学领域中的一个重要研究方向。非对称微腔打破了常规回音壁光学微腔的边界圆对称性,使得回音壁模式的辐射具有明显方向性,无需借助外部耦合器件即能有效地同环境交换能量,有望应用于制作集成光学器件和实现自由空间光互联。概要介绍了非对称微腔中的最新研究进展,包括高准直定向发射、高效的自由空间光激发、棘轮形非对称腔以及三维非对称腔4个研究方向,概述其基本原理并展望了未来的发展。 Recently, whispering-gallery modes in an optical microcavity gradually become an important area of research owing to its high quality factor, small mode volumes and on-chip characteristics. The cavity without circular symmetry, which is called asymmetric microcavity, is a significant branch of microcavity research. The asymmetric microcavity breaks rounded symmetry, so the cavity has directional radiation. It couples with external environment efficiently. It may be used in integrated optics and free space optical interconnects. We review the research progress of asymmetric microcavity, including directional emission of high collimation, efficient free space excitation, ratchet microcavity, and three-dimensional asymmetric microcavity. The basic principles and the prospect development are also outlined.
出处 《激光与光电子学进展》 CSCD 北大核心 2012年第6期48-55,共8页 Laser & Optoelectronics Progress
基金 河南省基础与前沿技术研究计划(112300410258) 河南省科技攻关计划项目(092102210343) 河南省自然科学研究计划(2011A140021) 商丘师范学院青年科研基金(2010QN15)资助课题
关键词 微纳光学 非对称微腔 定向发射 自由空间耦合 棘轮 混沌 micro-nano optics asymmetric microcavity directional emission free space coupling ratchet chaos
  • 相关文献

参考文献6

二级参考文献58

共引文献43

同被引文献36

  • 1E Betzig, J K Trautman. Near field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit [J]. Science, 1992, 257(5067): 189-195.
  • 2E Ozbay. Plasmonics: Merging photonics and electronics at nanoscale dimensions [J]. Science, 2006, 311(5758): 189-193.
  • 3A Ksendzov, Y Lin. Integrated optics ring-resonator sensors for protein detection [J]. Opt Lett, 2005, 30(24): 3344-3346.
  • 4K Sakoda. Optical Properties of Photonic Crystals [M]. New York: Springer, 2004.
  • 5Y F Xiao, C L Zou, Y Li, et al. Asymmetric resonant cavities and their applications in optics and photonics: a review [J]. Front Optoelectron China, 2010, 3(2): 109-124.
  • 6J Yao, Z Liu, Y Liu, et al. Optical negative refraction in bulk metamaterials of nanowires[J]. Science, 2008, 321(5891): 930.
  • 7K Yee. Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media [J]. IEEE Trans Antennas Propag, 1966, 14(3): 302-307.
  • 8O C Zienkiewiez, R L Taylor, J Z Zhu. The Finite Element Method: Its Basis and Fundamentals [ M ]. London Butterwort h-Heinemann, 2005.
  • 9J Wiersig. Boundary element method for resonances in dielectric microcavities[J].J Opt A: Pure Appl Opt, 2003, 5(1): 53- 60.
  • 10J J Xiao, C T Chan. Calculation of the optical force on an infinite cylinder with arbitrary cross section by the Boundary element method[J]. J OptSocAmB, 2008, 25(9): 1553-1561.

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部