期刊文献+

GC-BES:一种新的基于嵌入集的图分类方法 被引量:1

GC-BES:A Novel Graph Classification Approach Based on Embedding Sets
下载PDF
导出
摘要 已提出很多图分类方法。这些方法在挖掘频繁子图时,只考虑了子图的结构信息,没有考虑子图的嵌入信息。实际上,有些频繁子图挖掘算法在计算子图的支持度时,可以获得嵌入信息。在L-CCAM子图编码的基础上,提出了一种基于嵌入集的图分类方法。该方法采用基于类别信息的特征子图选择策略,充分利用嵌入集,在频繁子图挖掘过程中直接选择特征子图。通过实验表明,该方法是有效的、可行的。 Many graph classification approaches have been proposed.These approaches only look at the structural information of the pattern,but do not take advantage of the embedding information during mining frequent subgraph.In facts,in some efficient subgraph mining algorithms,the embedding information of a pattern can be maintained.A graph classification approach was presented.Based on L-CCAM coding,it uses a feature subgraph selection strategy based on label information to select the feature subgraph,while making full use of embedding sets to directly generate feature subgraph in mining frequent subgraph.Experiment results show that it is effective and feasible.
出处 《计算机科学》 CSCD 北大核心 2012年第6期155-158,共4页 Computer Science
关键词 频繁子图 图分类 图挖掘 特征选择 Frequent subgraph Graph classification Graph mining Feature selection
  • 相关文献

参考文献14

  • 1Jin Ning, Young C, Wang Wei. GALA: Graph Classification U- sing Evolutionary ComputationFC]//SIGMOD10. 2010.
  • 2Deshpande M, Kuramochi M, Karypis G. Frequent SubsStruc- ture-based Approaches for Classifying Chemical Compounds FJ]. IEEE Transactions on Knowledge and Data Engineering, 2005,17 (8) : 1036-1050.
  • 3刘勇,李建中,朱敬华.一种新的基于频繁闭显露模式的图分类方法[J].计算机研究与发展,2007,44(7):1169-1176. 被引量:10
  • 4Inokuchi A,Washio T, Motoda H. An Apriori-based Algorithm for Mining Frequent Substructures from Graph Data[-C] ff 4th European Conference on Principles of Data Mining and Know- ledge Discovery(PKDD 2000). Lyon, France, September 2000.
  • 5Kuramochi M, Karypis G. Frequent subgraph discovery [C]ff Proceedings of the 2001 IEEE International Conference on Data Mining. 2001 : 313-320.
  • 6Yan X, Han J. gSpan: Graph-based substructure pattern mining [-C]ffProc. 2002 Int. Conf. on Data Mining (ICDM02). 2002.. 721-724.
  • 7Huan J,Wang W, Prins J. Efficient mining of frequen subgraph in the presence of isomorphism C // Proceedings of the 3rd IEEE International Confrence on Data Mining (ICDM). 2003: 549-552.
  • 8Yan Xi-feng, Han Jia-wei. CloseGraph: Mining Closed Frequent Graph Patters[-C ff Proc. of the Ninth ACM SIGKDD Intl. Conf. on Knowledge Discovery and Data Mining. ACM Press, Aug. 2003 : 286-295.
  • 9Yan Xi-feng, Cheng Hong, Han Jia-wei, et al. Mining Significant Graph Patterns by Leap Search[C]//SIGMOD'08. 2008.
  • 10Fan Wei, Zhang Kun, Cheng Hong, et al. Direct Mining of Dis- criminative and Essential Frequent Patterns via Model-based Search Tree[-C//KDD. 2008.

二级参考文献25

  • 1汪卫,周皓峰,袁晴晴,楼宇波,施伯乐.基于图论的频繁模式挖掘[J].计算机研究与发展,2005,42(2):230-235. 被引量:17
  • 2刘勇,李建中,朱敬华.一种新的基于频繁闭显露模式的图分类方法[J].计算机研究与发展,2007,44(7):1169-1176. 被引量:10
  • 3M Kuramochi,G Karypis.Frequent subgraph discovery[C].ICDM,San Jose,USA,2001.
  • 4X Yan,J Han.gSpan:Graph-based substructure pattern mining[C].ICDM,Maebashi City,Japan,2002.
  • 5X Yan,J Han,Closegraph:Mining closed frequent graph patterns[C].KDD-2003,Washington,USA,2003.
  • 6J Huan,W Wang,J Prins.Efficient mining of frequent subgraphs in the presence of isomorphism[C].ICDM,Melbourne.USA,2003.
  • 7X Yan,P S Yu,J Han.Graph indexing:A frequent structurebased approach[C].ACM SIGMOD 2004,Paris,France,2004.
  • 8X Yan,P S Yu,J Han.Substructure similarity search in graph databases[C].ACM SIGMOD 2005,Baltimore,USA,2005.
  • 9X Yan,P S Yu,J Han.Searching substructures with superimposed distance[C].ICDE'06,Atlanta,USA,2006.
  • 10C Faloutsos,K S McCurley,A Tomkins.Fast discovery of connection subgraphs[C].KDD-2004,Seattle,USA,2004.

共引文献9

同被引文献18

  • 1TDWI Checklist Report:Big Data Analytics[OL].http://tdwi.org/research/2010/08 Big-Data-Analytics.aspx.
  • 2Zou Xiao-hong,Chen Xiao,Guo Jing-feng,et al.An improved algorithm for mining Close Graph[J].ICIC Express Letters Journal of Research and Surveys,2010,4(4):1135-1140.
  • 3Guo Jing-feng,Chai Ran,Li Jia.Top-down algorithm for mining maximal frequent subgraph[J].Advanced Research on Industry,Information System and Materials Engineering,2011,204-210:1472-1476.
  • 4Gupta S,Raman V,Saurabh S.Maximum r-Regular Induced Subgraph Problem:Fast Exponential Algorithms and Combinatorial Bounds[J].SIAM Journal on Discrete Mathematics,2012,26(4):1758-1780.
  • 5Lenk A,Klems M,Nimis J,et al.What's inside the cloud? An Architectural Map of the Cloud Landscape[C]//Proceedings of the 2009 ICSE Workshop on Software Engineering Challenges of Cloud Computing.2009:23-31.
  • 6Son J,Choi H,Chung Y D.Skew-tolerant key distribution for load balancing in MapReduce[J].IEICE Transaction on Information and Systems,2012,95 (2):677-680.
  • 7Valiant Leslie G.A bridging model for parallel computation[J].Communication of the ACM,1990,33(3):103-111.
  • 8Grzegorz M,Matthew A H,Bik Art J C,et al.Pregel:A system for large-scale graph processing[C]// Proceedings of the SIGMOD.Indianapolis,Indiana,USA,2010:135-145.
  • 9Avery C.Giraph:Large-scale graph processing infrastruction on Hadoop[C]//Proceedings of the Hadoop Summit.Santa Clara,2011.
  • 10Tyson C,Neil C,Peter A,et al.MapReduce Online[C]// Proceedings of the NSDI.San,Jose,California,USA,2010:33-48.

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部