期刊文献+

运用EO-1 Hyperion数据和单类支持向量机方法提取岩性信息 被引量:6

Lithologic Mapping Using EO-1 Hyperion Data and Extended OCSVM
下载PDF
导出
摘要 将扩展的单类支持向量机方法运用到高光谱岩性识别中,并分析和评价该方法的性能。利用单类支持向量机分别提取各个感兴趣的岩性类别,对于被识别为多个岩性类别的像元,根据该像元与每个单类支持向量机所确定的分类超平面的距离来确定属于哪一类别,这样,利用扩展的单类支持向量机来可提取多个感兴趣的岩性类别。将该方法运用到新疆准噶尔地区的EO-1 Hyperion高光谱数据岩性分类中,并与传统的光谱角制图方法进行比较。结果表明,扩展的单类支持向量机方法的岩性分类精度显著高于光谱角制图方法,是一种新的可用于高光谱数据的岩性分类方法。 An extended one-class support vector machine (OCSVM) was applied to lithologic mapping from the EO-1 Hyperion hyperspectral data, and it has been evaluated in terms of classification accuracy. First OCSVM was separately used to extract each lithologic unit of interest. The pixel which was classified to different classes simultaneously was then assigned as the class with smallest distance to the hyperplane. In this way, the extended OCSVM can be used for extracting several lithologic units of interest. The extended OCSVM method was used in lithologic classification from the EO-1 Hyperion hyperspectral data in Junggar area, Xinjiang and compared with the spectral angle mapper (SAM) method. The results showed that the extended OCSVM method outperformed the SAM method in lithologic classification. The extended OCSVM is a useful and effective method for lithologic classification from hyperspectral remote sensing data.
出处 《北京大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第3期411-418,共8页 Acta Scientiarum Naturalium Universitatis Pekinensis
基金 国家重点基础研究发展计划(2009CB219302)资助
关键词 高光谱 单类支持向量机 光谱角制图 岩性分类 hyperspectral data OCSVM SAM lithologic classification
  • 相关文献

参考文献2

二级参考文献39

  • 1杨经绥,王希斌,史仁灯,许志琴,吴才来.青藏高原北部东昆仑南缘德尔尼蛇绿岩:一个被肢解了的古特提斯洋壳[J].中国地质,2004,31(3):225-239. 被引量:95
  • 2Vane G,Goetz A F H.Terrestrial imaging spectrometry:Current status,future trends[J].Remote Sensing of Environment,1993,44(2-3):117 ~126.
  • 3Landgrebe D,Serpico S B,Crawford M M,et al.Introduction to the special issue on analysis of hyperspectral image data[J].IEEE Transactions of Geosciences and Remote Sensing,2001,39 (7):1343 ~ 1345.
  • 4Pearlman J,Carman S,Segal C,et al.Overview of the Hyperion imaging spectrometer for the NASA EO-1 mission[A].In:Proceedings of IGARSS[C],Sydney,Australia,2001,17:3036~3038.
  • 5Ungar S G.Overview of EO-1,the first 120 days[A].In:Proceedings of IGARSS,Sydney,Australian,2001,1:43 ~ 45.
  • 6Hubbard B E,Crowley J K,Zimbelman D R.Comparative alteration mineral mapping using visible to shortwave infrared (04-2.4 μm)Hyperion,ALI,and ASTER Imagery[J].IEEE Transactions of Geosciences and Remote Sensing,2003,41(6):1401 ~1410.
  • 7Crowley J K,Brickey D W,Rowan L C.Airborne imaging spectrometer data of the Ruby Mountains,Montana:mineral discrimination using relative absorption band-depth images[J].Remote Sensing of Environment,1989,29(2):121 ~134.
  • 8Farrand W H,Harsanyi J C.Mapping the distribution of mine tailings in the coeur d'Alene River Valley,Idaho,through the use of a constrained energy minimization technique[J].Remote Sensing of Environment,1997,59(1):64~76.
  • 9Farrand W H,Harsanyi J C.Mapping distributed geological and botanical targets through constrained energy minimization[A].In:Proceedings of the Tenth Thematic Conference on Geological Remote Sensing[C],San Antonio,Texas,1994:I-419 ~ I-429.
  • 10Sabins F F.Remote sensing for mineral exploration[J].Ore Geology Review,1999,14:157~183.

共引文献19

同被引文献72

引证文献6

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部