期刊文献+

气体分配方式对民机多隔仓燃油箱惰化的影响 被引量:5

Influent of inerting process of multi-bays central fuel tank for civil passenger airplane under various gas distributions
原文传递
导出
摘要 在假设燃油箱整体和各隔仓无质量堆积的前提下,建立了一种可根据压力差自动确定流动方向和流量的数学模型,并给出了迭代法计算的步骤,然后采用微元法获得了惰化过程中各隔仓体积氧浓度随换气次数的关系.以波音747中央翼油箱为对象,与国外文献中公布的实验数据进行了对比,验证了所建模型有较高的计算精度.以国产某型客机中央翼燃油箱为研究对象,给出了4种不同的富氮气体进气孔设置及2种气体分配方式,比较了它们对惰化过程的影响,结果显示,将富氮气体按体积平均方式通入所有的隔仓具有最好的惰化效果,而将进气孔口设置在外侧隔仓并单独进气的惰化效果最差,而且在中部对称位置的隔仓上设置进气孔优于非对称位置设置进气孔. Based on the assumption of zero mass accumulation in the fuel tank and all bays,a mathematical model to automatically determine the flow direction and rate via the pressure difference was set up,and iterative steps were offered.Then,the mole concentration of the oxygen in the each bay related to volumetric tank exchange of ullage via the differential method was obtained.Adopting Boeing 747 central wing tank as the object of study,the calculating results of the models show highly accurate with the experimental data published on the foreign literature.The central fuel tank of an unnamed domestic passenger airplane was employed to study the inerting process influenced by 4 different configurations of the nitrogen-enriched air inlet port and 2 different gas distributions.The result reveals that the inering effect is the best to distribute the nitrogen-enriched air into all bays according to the volume average while it is the worst to solo distribute the nitrogen-enriched air into an outside bay.Moreover,it is better to emplace the inlet ports on the symmetrical bays than the asymmetrical bays.
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2012年第5期595-600,共6页 Journal of Beijing University of Aeronautics and Astronautics
基金 航空科学基金资助项目(50306017) 南京航空航天大学引进人才科研基金资助项目(S1030-014)
关键词 燃油惰化 冲洗 中央翼燃油箱 多隔仓 迭代 fuel inerting washing central fuel tank multi bays iterative method
  • 相关文献

参考文献3

二级参考文献30

  • 1肖再华.飞机燃油箱惰化[J].航空科学技术,2005,16(1):31-33. 被引量:27
  • 2闫红敏,江平,高永庭.军用飞机机载制氮系统研究[J].沈阳航空工业学院学报,2005,22(5):12-14. 被引量:10
  • 3肖华军,袁修干.机载分子筛制氧技术发展的现状与动向[J].航空科学技术,1997(1):26-28. 被引量:21
  • 4[2]William M.C.Developing a fuel-tank inerting system[J].Aircraft Survivability,Published by the Joint Aircraft Survivability Program Office,2005,20-23.
  • 5[3]Thomas L.R.,Delbert B.B,Daniel F.L.,Conrad M.R.Onboard Inert Gas Generation System/Onboard Oxygen Gas Generation System (OBIGGS/OBOGS) Study,Part I:Aircraft System Requirements[J].NASA/CR-2001-210903,2001,(5).
  • 6[4]Thomas L.R.,Delbert B.B,Daniel F.L.,Conrad M.R.Onboard Inert Gas Generation System/Onboard Oxygen Gas Generation System (OBIGGS/OBOGS) Study,Part II:Gas Separation Technology-State of the Art[J].NASA/CR-2001-210950,2001,(5).
  • 7[5]Robert C.M.,Martin L.L..Fuel tank explosion protection for large aircraft[J].Aircraft Survivability,Published by the Joint Aircraft Survivability Program Office,2005,16-17.
  • 8[6]Robertg C..The evolution of on-board inert gas generation systems (OBIGGS)[J].SAFE Journal,1990,(20):45-50.
  • 9[7]A.F.Grenich,F.F.Tolle,G.S.Glenn,W.J.Yagle.Design of on-board inert gas generation systems for military aircraft[J].San Diego,California,1984,(84):2518.
  • 10[8]Russ H..F-22 OBIGGS Monitor Zirconia Oxygen Sensor Technology-A Design and Logistical Benefit Analysis[J].SAFE Association 41st Annual Symposium Proceedings,2003.

共引文献52

同被引文献16

引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部