摘要
针对工程中复杂可展曲面难以用单一可展曲面来表示的问题,提出了一种带多形状参数的CE-Bézier可展曲面的光滑拼接技术.在对CE-Bézier可展曲面性质分析的基础上,将3D欧几里德空间中的CE-Bézier可展曲面解释为4D齐次空间中的CE-Bézier参数曲线,并利用参数曲线的连续性推导了CE-Bézier可展曲面间G1光滑拼接、Farin-BehmG2连续拼接以及G2Beta约束拼接的充要条件.最后给出了CE-Bézier可展曲面间光滑拼接的基本步骤和几何造型实例.研究结果表明:所提方法简单、直观、易实现,有效地增强了CE-Bézier可展曲面表达复杂可展曲面的能力.
Complex developable surfaces in engineering can not be described by using a single developable surface.Thus,the continuity conditions of developable CE-Bézier surfaces with multiple shape parameters were investigated.Following the analysis of some properties about developable CE-Bézier surfaces,the necessary and sufficient conditions of G1 continuity,FarinBehm G2 continuity and G2 Beta continuity between two adjacent developable CE-Bézier surfaces were presented.Finally,some applications in developable CE-Bézier surfaces design were discussed.The modeling examples illustrate that the continuity conditions of the developable CE-Bézier surfaces provide a valuable way for the design of developable surfaces.
出处
《华中科技大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2012年第4期54-58,共5页
Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金
国家自然科学基金资助项目(11026051)
陕西省自然科学基金资助项目(2011JM1006)
陕西省教育厅基金资助项目(11JK1052)