期刊文献+

基于红外热图像的棉花水分胁迫指数高光谱遥感估算研究 被引量:5

Estimation of Cotton Canopy Crop Water Stress Index(CWSI)Based on Hyperspectral Remote Sensing Infrared Images
下载PDF
导出
摘要 分别用Fluke公司生产的红外热像仪和ASD公司生产的非成像高光谱仪获取了棉花在5个生育时期的冠层的红外热图像和反射光谱。对红外热图像进行了技术处理,并根据Jones定义的作物水分胁迫指数CWSI计算了CWSI;利用光谱分析技术确定了反射光谱654 nm和一阶微分光谱738 nm处为CWSI的敏感波段;分别建立了它们与CWSI的线性相关模型方程。经检验,CWSI定量模型方程的估算精度分别为72.4%和80.5%。研究结果表明,用红外热图像技术作为获取作物冠层高分辨率空间信息的手段,可以消除背景干扰因素的影响,从而更精确地计算棉花冠层的CWSI。而与反射光谱相比,棉花冠层一阶微分光谱更适用于对棉花水分胁迫指数CWSI进行实时、动态估算。 ThermM images and reflectance spectra of cotton canopy were acquired by using a radiometric video camera from Fluke company and a portable non-imaging hyperspectral spectrometer from ASD company in five growth stages of cotton respectively. The thermal images were processed and the crop water stress index (CWSI) was calculated according to Jones' definition. Through spectrum analysis, both the reflectance spectrum at the wavelength of 654 nm and the first derivative spectrum at the wavelength of 738 nm were considered as the sensitive wavebands of the CWSI. The linear correlation model equations were established. The regression function accuracy values were 72.4 % and 80.5 % respectively. The research result showed that by using infrared thermal imaging technology to acquire h-igh spatial resolution information of crop canopy, the effects of background interference factors could be eliminated and the CWSI of cotton canopy could be calculated more accurately. Compared with the reflectance spectra, the first, derivative spectra was more suitable for the real-time and dynamic calculation of the CWSI of cotton.
出处 《红外》 CAS 2012年第6期17-21,45,共6页 Infrared
基金 国家自然科学基金项目(30960185) 人力资源和社会保障部留学回国人员科技活动项目(2009XL003) 石河子大学高层次人才启动项目(RCZX200813)
关键词 棉花 红外热图像 高光谱 CWSI 估算研究 cotton infrared thermal image hyperspectral CWSI estimation
  • 相关文献

参考文献13

  • 1Idso S B, Jackson R D, Pinter J P J, et al. Nor- malizing the Stress-degree-day Parameter for Envi- ronmentM Variability [J]. Agricultural Meteorology, 1981, 24(2): 45-55.
  • 2Tanner C B. Plant Temperatures [J]. Agronomy Journal, 1963, 55(1): 210-211.
  • 3Jackson R D. Canopy Temperature and Crop Water Stress [J]. Advanced Irrigation, 1982, 25(1): 43-85.
  • 4Meron M, Tsipris J, Charitt D. Remote Mapping of Crop Water Status to Assess Spatial Variability of Crop Stress [C]. Academic Publishers: Proceedings of the 4th European Conference on Precision Agri- culture, 2003.
  • 5Cohen Y, Alchanatis V, Meron M, et al. Estima- tion of Leaf Water Potential by Thermal Imagery and Spatial Analysis [J]. Journal of Experimental Botang, 2005, 417(56): 1843-1852.
  • 6康绍忠.西北地区农业节水与水资源持续利用[M].北京:中国农业出版社,1998.
  • 7袁国富,唐登银,罗毅,于强.基于冠层温度的作物缺水研究进展[J].地球科学进展,2001,16(1):49-54. 被引量:62
  • 8Jones H G. Plants and Microclimate: A Quantitative Approach to Environmental Plant Physiology [M]. London: Cambridge University Press, 1992.
  • 9Irmak S, Dorota Z, Ruhi B. Deterrnination of Crop Water Stress Index for Irrigation Timing and Yield Estimation of Corn [J]. Agronomy Journal, 2000, 92(6): 1221-1227.
  • 10Moran M S, Clarke T R, Inoue Y, et al. Estimat- ing Crop Water Deficit Using the Relation between Surface-air Temperature and Spectral Vegetation In- dex [J]. Remote Sensing Environment, 1994, 46(3): 246-263.

二级参考文献5

共引文献61

同被引文献82

引证文献5

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部