期刊文献+

采用抗差扩展卡尔曼滤波器的感应电机转速估计方法 被引量:29

A Speed Estimation Method of Induction Motors Using the Robust Extended Kalman Filter
原文传递
导出
摘要 扩展卡尔曼滤波器(extended Kalman fileter,EKF)已广泛应用于无速度传感器矢量控制转速估计。尽管扩展卡尔曼滤波器具有较强的抗干扰能力,但是面对粗差时仍然会出现较大的抖动,影响系统的控制性能。提出了一种基于抗差扩展卡尔曼滤波器的转速估计方法,分析了粗差对扩展卡尔曼滤波器估算精度的影响,探讨了在应用于感应电机转速估计时抗差EKF能否同样取得良好的估计精度,以及优于EKF的抗粗差性能。通过仿真与实验,对比了遇到较大外部干扰和估算误差干扰时抗差EKF与EKF的转速误差和磁链变化。仿真与实验结果表明,抗差EKF较EKF而言具有更好的抗粗差性能,可以使系统遇到干扰时更快收敛。 Extended Kalman filter(EKF) is widely used in speed estimation of induction motors in sensorless vector control systems.Although EKF has a strong anti-interference ability,the filter is still unsteady with gross error.A speed estimation method of induction motors based on the robust extended Kalman filter is proposed in this paper,and the effect of gross errors on estimation accuracy of the extended Kalman filter is analyzed.Whether robust EKF can give better estimation performance and robust ability than EKF for speed estimation of induction machines is discussed.Through the simulation and experiments,the speed estimation error and the flux change coursed by external disturbance and estimation error based on robust EKF are compared with EKF.The simulation and experimental results show that robust EKF has the same estimation performance and better robust ability.
出处 《中国电机工程学报》 EI CSCD 北大核心 2012年第18期152-159,190,共8页 Proceedings of the CSEE
基金 陕西省重点学科建设专项资金资助项目(105-00X901) 陕西省自然基金资助项目(2011JQ7020) 陕西省教育厅科学研究计划资助项目(11JK0884)~~
关键词 抗差 扩展卡尔曼滤波器 感应电机 转速估计 矢量控制 robust extended Kalman filter(EKF) induction motor speed estimation vector control
  • 相关文献

参考文献21

  • 1Orlowska-Kowalska T, Dybkowski M. Stator-current- based MRAS estimator for a wide range speed-sensorless induction-motor drive[J]. IEEE Transactions on Industrial Electronics, 2010, 57(4): 1296-1308.
  • 2Gadoue S M, Giaouris D, Finch J W. MRAS sensorless vector control of an induction motor using new sliding- mode and fuzzy-logic adaptation mechanisms[J]. IEEE Transactions on Energy Conversion, 2010, 25(2): 394-402.
  • 3Etien E, Chaigne C, Bensiali N. On the stability of full adaptive observer for induction motor in regenerating mode[J]. IEEE Transactions on Industrial Electronics, 2010, 57(5): 1599-1608.
  • 4Orlowska-Kowalska T , Dybkowski M , Szabat K. Adaptive Sliding-mode neuro-Fuzzy control of the two-mass induction motor drive without mechanical sensors[J]. IEEE Transactions on Industrial Electronics, 2010, 57(2): 553-564.
  • 5Barut M, Bogosyan S, Gokasan M. EKF based sensorless direct torque control of IMs in the low speed range[C]// Proceedings of the IEEE International Symposium on Industrial Electronics. Dubrovnik: IEEE, 2005: 969-974.
  • 6陈振,刘向东,靳永强,戴亚平.采用扩展卡尔曼滤波磁链观测器的永磁同步电机直接转矩控制[J].中国电机工程学报,2008,28(33):75-81. 被引量:73
  • 7Lu Ke, Xiao Jian. Parameter adaptation sensorless control of induction motor based on strong track filter[C]//2011 IEEE International Conference on Computer Science and Automation Engineering (CSAE). Chengdu, China: IEEE, 2011: 487-497.
  • 8Bolognani S, Tubiana L, Zigliotto M. EKF-based sensorless IPM synchronous motor drive for flux- weakening application[J]. IEEE Transactions on IndustryApplications, 2003, 39(3): 768-775.
  • 9Xiong K, Zhang H, Liu L. Adaptive robust extended Kalman filter for nonlinear stochastic systems[J]. IET Control Theory&Applications, 2008, 2(3): 239-250.
  • 10Ran Zhengyun, Li Huade, Chen Shujin. Application of optimized EKF in direct torque control System of induction motor[C]//First International Conference on Innovative Computing, Information and Control. Beijing, China: Beijing Jiaotong University & ICIC International, 2006: 331-335.

二级参考文献45

共引文献136

同被引文献253

引证文献29

二级引证文献144

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部