摘要
AaNhaD, a gene isolated from the soda lake alkaliphile Alkalimonas amylolytica, encodes a Na+/H+ antiporter crucial for the bacterium's resistance to salt/alkali stresses. However, it remains unknown whether this type of bacterial gene may be able to increase the tolerance of flowering plants to salt/alkali stresses. To investigate the use of extremophile genetic resources in higher plants, transgenic tobacco BY-2 cells and plants harboring AaNhaDwere generated and their stress tolerance was evaluated. Ectopic expression of AaNhaD enhanced the salt tolerance of the transgenic BY-2 cells in a pH-dependent manner. Compared to wild-type controls, the transgenic cells exhibited increased Na+ concentrations and pH levels in the vacuoles. Subcellular localization analysis indicated that AaNhaD-GFP fusion proteins were primarily localized in the tonoplasts. Similar to the transgenic BY-2 cells, AaNhaD.overexpressing tobacco plants displayed enhanced stress tolerance when grown in saline-alkali soil. These results indicate that AaNhaD functions as a pH-dependent tonoplast Na+/H+ antiporter in plant cells, thus presenting a new avenue for the genetic improvement of salinity/alkalinity tolerance.
AaNhaD, a gene isolated from the soda lake alkaliphile Alkalimonas amylolytica, encodes a Na+/H+ antiporter crucial for the bacterium's resistance to salt/alkali stresses. However, it remains unknown whether this type of bacterial gene may be able to increase the tolerance of flowering plants to salt/alkali stresses. To investigate the use of extremophile genetic resources in higher plants, transgenic tobacco BY-2 cells and plants harboring AaNhaDwere generated and their stress tolerance was evaluated. Ectopic expression of AaNhaD enhanced the salt tolerance of the transgenic BY-2 cells in a pH-dependent manner. Compared to wild-type controls, the transgenic cells exhibited increased Na+ concentrations and pH levels in the vacuoles. Subcellular localization analysis indicated that AaNhaD-GFP fusion proteins were primarily localized in the tonoplasts. Similar to the transgenic BY-2 cells, AaNhaD.overexpressing tobacco plants displayed enhanced stress tolerance when grown in saline-alkali soil. These results indicate that AaNhaD functions as a pH-dependent tonoplast Na+/H+ antiporter in plant cells, thus presenting a new avenue for the genetic improvement of salinity/alkalinity tolerance.
基金
supported by grants from the National Natural Science Foundation(30771162)
the Ministry of Agriculture of China(2009ZX08009-096B)