期刊文献+

(2+1)维广义破碎孤子方程的Painlev(?)可积性和多孤子解

Painleve integrability and multi-soliton solutions for(2+1)-dimensional general breaking soliton equation
下载PDF
导出
摘要 借助符号计算软件,利用简化的Weiss-Tabor-Carnevale(WTC)方法,对广义的(2+1)维破碎孤子方程进行了Painleve检验,并得到了该方程的可积条件.基于多维Bell多项式的相关理论知识,导出了该方程的Hirota双线性形式,并构造出了方程的多孤子解. By using the Weiss-Tabor-Carnevale (WTC) method and the symbolic computation, the Painlev@ test for a (2+1)-dimensional breaking soliton equation is applied with the generalized form, and the Painleve integrability condition of this equation is gotten. The Hirota bilinear form of the studied equation in terms of the main properties of the multi-dimensional binary Bell polynomials is obtained, and the soliton solutions are given out.
作者 张瑜 徐桂琼
出处 《应用数学与计算数学学报》 2012年第2期203-213,共11页 Communication on Applied Mathematics and Computation
基金 国家自然科学基金资助项目(10801037)
关键词 (2+1)维广义破碎孤子方程 PAINLEVÉ分析 BELL多项式 Hirota双线性形式 孤子解 (2+1)-dimensional general breaking soliton equation Painleve analy-sis Bell polynomial Hirota bilinear form soliton solution
  • 相关文献

参考文献1

二级参考文献52

  • 1K. Konno and M. Wadati, Prog. Theor. Phys. 53 (1975) 1652.
  • 2J. Satsuma, J. Phys. Soc. Jpn. 46 (1979) 359.
  • 3N.C. Freeman and J.J. Nimmo, Phys. Lett. A 95 (1983) 1.
  • 4J.J. Nimmo and N.C. Freeman, Phys. Lett. A 95 (1983) 4.
  • 5N.C. Freeman, IMA J. Appl. Math. 32 (1984) 125.
  • 6N.C. Freeman, G. Horrocks, and P. Wilkinson, Phys. Lett. A 81 (1981) 305.
  • 7S.F. Deng, D.Y. Chen, and D.J. Zhang, J. Phys. Soc. Jpn. 72 (2003) 2184.
  • 8T. Su, X.G. Geng, and Y.L. Ma, Chin. Phys. Lett. 24 (2007) 2.
  • 9Z.Y. Sun, Y.T. Gao, X. Yu, W.J. Liu, and Y. Liu, Phys. Rev. E 80 (2009) 066608.
  • 10Z.Y. Sun, Y.T. Gao, X. Yu, X.H. Meng, and Y. Liu, Wave Motion 46 (2009) 511.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部