期刊文献+

风云二号静止气象卫星数据估算土壤表面水分方法研究 被引量:7

Estimation of surface soil moisture from onboard FY-2D satellite multi-temporal data
下载PDF
导出
摘要 考虑到土壤水分会影响地表温度随太阳辐射变化的幅度,本文提出利用多时相热红外波段和可见光波段数据反演地表水分的算法,并利用第一代静止气象卫星——风云二号数据估算了2010年9月30日和10月20日西北地区范围的土壤表面水分,并与先进机械辐射扫描计(advanced mechanically scanned radiometer:AMSR)土壤水分产品进行比较验证。结果表明:该算法估算的土壤表面水分与AMSR土壤水分产品相关性为0.52,两者的均方根误差在0.025 g.cm 3以内,最大误差不超过0.07 g.cm 3。同时,利用该算法生成西北地区土壤表面水分空间分布图,与同期降水资料相比较,两者空间分布较为一致。此外,该算法可获得5 km×5 km空间尺度的土壤表面水分,提高了土壤水分遥感估算的空间分辨率。 Surface soil moisture(SSM) is a critical element of the hydrologic processes that influences exchange of water and en-ergy fluxes at the land/atmospheric interface.Current remote sensing applications in SSM studies are largely limited to polar orbiting satellites.With the development of new generation geostationary satellites such as MSG and GOES-O&P,land surface visible and thermal infrared data can be acquired with high spatial and temporal resolutions.Consequently,great opportunities exist to analyze land surface soil moisture with retrieval methods of satellite-observed data.Fengyun-2D is a Chinese operated geostationary satellite with one visible and four infrared channels of optical imaging radiometer with temporal image acquisition frequency of 30 min.This allows mapping diurnal variations in land surface shortwave radiation(SSR) and land surface temperature(LST).The objective of this study was to estimate SSM from diurnal evolutions of SSR and LST.FY-2D data(with a spatial resolution of 5 km) were download along with advanced mechanically scanned radiometer(AMSR) soil moisture products(with spatial resolution of 25 km).The sets of data were geographically corrected via geo-referencing using geo-locational tools.The thermal and visible infrared soil moisture data products from FY-2D and AMSR were matched using a linear resampling method.Next,an algorithm for estimating SSM via two thermal infrared channels(IR1: 10.3~11.3 ?m and IR2: 11.5~12.5 ?m) and one visible channel(0.55~0.9 ?m) of the geostationary satellite data was proposed based on linear relationship between SSR and LST diurnal evolutions.Finally,the method was validated using FY-2D and AMSR SSM data products for September 30,2010 and SSM estimated using FY-2D data for October 20,2010.The results showed that the method was applicable in calculating SSM.SSM correlation based on analysis of FY-2D and AMSR was 0.52,root mean square error(RMSE) of 0.025 g?cm?3 and maximum errors 〈 0.07 g?cm?3.The proposed method was easy use and output mid-scale SSM that improved the spatial resolution of AMSR SSM products from 25 km to 5 km.However,it was noted that the method must be used with care as it was prone to severe error under vegetation or cloud cover.
作者 张霄羽 王娇
出处 《中国生态农业学报》 CAS CSCD 北大核心 2012年第7期882-887,共6页 Chinese Journal of Eco-Agriculture
基金 国家自然科学基金项目(40971199)资助
关键词 风云二号 AMSR 地表温度 可见光短波辐射 土壤表面水分 FY-2D AMSR Land surface temperature Shortwave radiation Surface soil moisture
  • 相关文献

参考文献15

  • 1Tansey K J, Millington A C. Investigating the potential for soil moisture and surface roughness monitoring in drylands using ERS SAR data[J]. International Journal of Remote Sensing, 2001, 22(11): 2129-2149.
  • 2Del Frate F, Ferrazzoli P, Schiavon G. Retrieving soil mois- ture and agricultural variables by microwave radiometry using neural networks[J]. Remote Sensing of Environment, 2003, 84(2): 174-183.
  • 3Sahoo A K, Houser P R, Ferguson C, et al. Evaluation of AMSR-E soil moisture results using the in-situ data over the Little River Experimental Watershed, Georgia[J]. Remote Sensing of Environment, 2008, 112(6): 3142-3152.
  • 4Cai G Y, Xue Y, Hu Y, et al. Soil moisture retrieval from MODIS data in Northern China Plain using thermal inertia model[J]. Journal of Remote Sensing, 2007, 28(16): 3567-3581.
  • 5Sepulcre-Canto G, Zarco-Tejada P J, Jimenez-Munoz J C, et al. Detection of water stress in an olive orchard with thermal remote sensing imagery[J]. Agricultural and Forest Meteor- ology, 2006, 136(1/2): 31-44.
  • 6宋小宁,赵英时.应用MODIS卫星数据提取植被—温度—水分综合指数的研究[J].地理学与国土研究,2004,20(2):13-17. 被引量:38
  • 7王鹏新,龚健雅,李小文.条件植被温度指数及其在干旱监测中的应用[J].武汉大学学报(信息科学版),2001,26(5):412-418. 被引量:237
  • 8Demarty J, Ottle C, Braud I, et al. Constraining a physically based soil-vegetation-atmosphere transfer model with surface water content and thermal infrared brightness temperature measurements using a multiobjective approach[J]. Water Resources Research, 2005, 41 : W01011 (1-15).
  • 9李新,小池俊雄,程国栋.一个基于模拟退火法的陆面数据同化算法[J].地球科学进展,2003,18(4):632-636. 被引量:27
  • 10Jiang G M, Li Z L, Nerry F. Land surface emissivity retrieval from combined mid-infrared and thermal infrared data of MSG-SEVIRI[J]. Remote Sensing of Environment, 2006,105(4): 326-340.

二级参考文献65

  • 1陈维英,肖乾广,盛永伟.距平植被指数在1992年特大干旱监测中的应用[J].环境遥感,1994,9(2):106-112. 被引量:176
  • 2吴炳方.NOAA AVHRR 1B数据的几何精纠正[J].环境遥感,1994,9(4):287-295. 被引量:16
  • 3Allen R M, Bastiaanssen W G M. Editorial: Special issue on remote sensing of crop evapotranspiration for large regions[J] Irrigation and Drainage Systems, 2005, 19(3/4): 207-210.
  • 4Li Z L, Tang R L, Wan Z M, et al. A review of current methodologies for regional evapotranspiration estimation from remotely sensed data[J]. Sensors, 2009, 9(5): 3801-3853.
  • 5Bastiaanssen W G M, Menenti M, Feddes R A, et al. A remote sensing surface energy balance algorithm for land (SEBAL). 1 Formulation[J]. Journal of Hydrology, 1998, 212/213: 198-212.
  • 6Roerink G J, Su Z, Menenti M. S-SEBI: A simple remote sensing algorithm to estimate the surface energy balance[J]. Physics and Chemistry of the Earth, Part B: Hydrology Oceans and Atmosphere, 2000, 25(2): 147-157.
  • 7Su Z. The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes[J]. Hydrology and Earth System Sciences, 2002, 6(1): 85-99.
  • 8Venturini V, Bisht G, Islam S, et al. Comparison of evaporative fractions estimated from AVHRR and MODIS sensors over South Florida[J]. Remote Sensing of Environment, 2004, 93(1/2): 77-86.
  • 9van der Keur P, Hansen S, Schelde K, et al. Modification of DAISY SVAT model for potential use of remotely sensed data[J]. Agricultural and Forest Meteorology, 2001, 106(3): 215-231.
  • 10Cleugh H A, Leuning R, Mu Q Z, et al. Regional evaporation estimates from flux tower and MODIS satellite data[J]. Remote Sensing of Environment, 2007, 106(3): 285-304.

共引文献299

同被引文献75

引证文献7

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部