期刊文献+

一种动态电源管理预测算法的设计及仿真 被引量:3

Design and simulation of prediction algorithm for dynamic power management
下载PDF
导出
摘要 针对基于马尔可夫模型的预测式动态电源管理算法(DPMPA)对大型样本数据预测精度低的问题,提出了一种具备自反馈功能的内嵌式马尔可夫模型(RMM)的DPMPA。该算法基于分层迭代思想,对满足马尔可夫性质的大型数据进行聚类,再使用马尔可夫算法对构建出的迭代数据模型:上层抽象数据模型和底层实例数据模型进行训练。引入反馈函数φ(i),控制转换概率矩阵更新频率,保证预测精度范围。依此,编制了自反馈内嵌式马尔可夫模型DPMPA的Matlab程序。应用该程序对无线热点访问次数进行仿真预测,得出不同训练样本数对后期样本的预测精度的影响,对比马尔可夫算法和自适应学习树(ALT)算法预测结果表明,基于该自反馈RMM预测式动态电源管理算法对于大型样本数据预测精度比前者高5%,后者高10%。预测精确度的提高,将更有利于马尔可夫算法的DPM系统功耗控制。 For the problem of low prediction accuracy that dynamic power management prediction algorithm(DPMPA) based on Markov model(MM) predicts large scale sample data,DPMPA of RMM with auto-feedback function is proposed.The algorithm can meet the cluster of large scale data with Markov property.The Markov algorithm was adopted to train the iteration data models(upper layer Abstract data model and bottom layer data model).Meanwhile,a feedback function was introduced to control the update frequency of transition probability matrix,and thus guarantee the prediction accuracy in a reasonable range.Afterwards,the Matlab program of DPMPA of AFRMM was compiled.This program was applied to conducting the simulation prediction for the access times of each wireless access point(WAP).The forecast accuracy based on learning different amount samples was obtained.Compared the prediction results of Markov algorithm and adaptive learning tree(ALT) algorithm,the prediction accuracy of AFRMM DPMPA is 5% higher than the former method and 10% higher than the latter method.The accuracy improvement is benefit for the power consumption control of DPM system by Markov algorithm.
作者 邓华 邱开林
出处 《现代电子技术》 2012年第13期130-133,共4页 Modern Electronics Technique
基金 中石油集团东方地球物理公司"物探核心装备与软件研制"项目(2008C-1602)资助
关键词 动态电源管理 预测式策略 内嵌式Markov模型 分层迭代 dynamic power management prediction strategy recursive Markov model layering iteration
  • 相关文献

参考文献8

  • 1江琦,奚宏生,殷保群.动态电源管理超时策略与随机型策略的等效关系[J].计算机辅助设计与图形学学报,2009,21(11):1646-1651. 被引量:3
  • 2OLY J, REED D A. Markov model prediction of I/O re- quests for scientific applications [C]// Proceedings of the International Conference on Supercomputing. New York: ICS, 2002.. 147-155.
  • 3RAJAT G, SEUNG W S. Markov model based disk power management for data intensive workloads [J]. IEEECS, 2009, 67: 76-83.
  • 4CHINCHILLA F, LINDSEY M, PAPADOPOULI M. Analysis of wireless information locality and association patterns in a campus[C]// INFOCOM IEEE Twenty-third Annual Joint Conference. [S. 1. ]: IEEE Computer and Communications Societies, 2004.. 906-917.
  • 5PENG Rong, PEDRAM M. An analytical model for predic- ting the remaining battery capacity of lithium-ion batteries[J]. IEEE Trans. on Very Large Scale Integration Sys- tems, 2006, 14(5): 441-451.
  • 6HUANG Chi-hong, ALLEN C H. A predictive system shutdown method for energy saving of event-driven compu- tation [J]. ACM. 2000, 5(2): 226-241.
  • 7姜连祥,许培培,杨根庆,李华旺.基于神经网络的自适应动态电源管理模型[J].华中科技大学学报(自然科学版),2009,37(1):108-111. 被引量:1
  • 8LIU Jia, LI Shun-xiang, JIA Shu-sheng. A prediction model based on neural network and fuzzy Markov [C]// Proceedings of the 7th World Congress on Intelligent Con- trol and Automation. Chongqing, Chain.. WCICAC, 2008: 790-793.

二级参考文献15

  • 1江琦,奚宏生,殷保群.动态电源管理的随机切换模型与策略优化[J].计算机辅助设计与图形学学报,2006,18(5):680-686. 被引量:4
  • 2吴琦,熊光泽.基于随机决策模型的动态功耗管理策略研究[J].计算机学报,2007,30(4):622-628. 被引量:10
  • 3Chung C, Eui Y, Benini L. Dynamic power management for nonstationary service requests[J]. IEEE Transactions on Computers, 2002, 51(11): 1 345- 1 361.
  • 4Lu Yunghsiang, Giovanni D M. Adaptive hard disk power management on personal computers[J]. IEEE Transactions on Computers, 2002, 51 (11): 1 345- 1 361.
  • 5Douglis F, Krishnan P, Bershad B. Adaptive disk spin-down policies for mobile computers[C]//Proc of the 2nd Usenix Symp on Mobile and Location-Independent Computing (MOBLIC). Berkeley: USENIX Association, 1995: 121-137.
  • 6Helmbold D P, Long D D E, Sherrod B. A dynamic disk spin-down technique for mobile computing[C]// Proc of the 2nd Annual ACM Int'l Conf on Mobile Computing and Networking. New York: ACM Press, 1996: 130-142.
  • 7Lu Y H, De Micheli G. Adaptive hard disk power management on personal computers[C]//Proceedings of the IEEE Great Lakes Symposium on VLSI. Los Alamitos: Institute of Electrical and Electronics Engineers Computer Society, 1999: 50-53.
  • 8Qiu Q, Pedram M. Dynamic power management based on continuous-time Markov decision processes [C] // Proceedings of the 36th Annual Design Automation Conference (DAC). NJ: IEEE, 1999: 555- 561.
  • 9Simunic T, Benini L, Glynn P, et al. Event-driven power management [J]. IEEE Trans on Computer- Aided Design of Integrated Circuits and Systems, 2001, 20(7): 840-856.
  • 10Hwang Chiwong, Wu A C H. A predictive system shutdown method for energy saving of event-driven computation[C]// Proceedings of the 1997 IEEE/ ACM International Conference on Computer-Aided Design. Los Alamitos: IEEE Comp Soc, 1997: 28- 32.

共引文献2

同被引文献24

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部