期刊文献+

一类状态反馈脉冲控制的捕食者-食饵动力系统 被引量:2

A Predator-prey System with Impulsive State Feedback Control
下载PDF
导出
摘要 本文研究了具有状态反馈脉冲控制的一类捕食者-食饵动力系统.我们首先利用微分方程几何理论和后继函数的方法得到该系统阶1周期解的存在性、唯一性和轨道渐近稳定性;然后说明了该系统不存在阶k(k=2,3,…)周期解,最后简单分析了相关结论在实践中的应用. In this paper, we investigate a predator-prey model with Impulsive state teeo- back control. Firstly, we find the sufficient condition for the existence, uniqueness and the or- bitally asymptotically stability of the order 1 periodic solutions of the system by differential equation geometry theory and the method of successor functions. Secondly,we prove that the system does not exist order k(k≥ 2) periodic solution. Finally, some numerical simulations and biological explanations are given.
出处 《应用数学》 CSCD 北大核心 2012年第3期661-666,共6页 Mathematica Applicata
基金 国家自然科学基金(11171284) 河南省科技创新杰出人才支持计划(104200510011) 河南省高校科技创新团队支持计划(2010IRTSTHN006) 信阳师范学院青年骨干教师资助计划(2011077)
关键词 半连续动力系统 捕食系统 周期解与稳定性. Semi-continuous dynamical system Predator-prey system Periodic solutionand stability
  • 相关文献

参考文献10

  • 1XIAO Dongmei,RUAN Shigui. Bogdanov-Takens bifurcations in predator-prey system with constant rate harvesting[J].Fields Inst Commun,1999.493-506.
  • 2CHEN Liujuan,CHEN Fengde. Glabol analysis of a harvested predator-prey model incorporating a constant prey refuge[J].International Journal of Biomathematics,2010.205-223.
  • 3PEI Yongzhen,LI Changguo,CHEN Lansun. Continuous and impulsive harvesting strategies in a stagestructured predator-prey model with time delay[J].J Math Comput Simulation,2009.2994-3008.
  • 4Negi K,Gakkhar S. Dynamics in a Beddington-DeAngelis prey-predator system with impulsive harvesting[J].Ecological Modelling,2007,(3/4):421-430.doi:10.1016/j.ecolmodel.2007.04.007.
  • 5ZENG Guangzhao,CHEN Lansun,SUN Lihua. Existence of periodic solution of order one of planar impulsive autonomous system[J].Journal of Computational and Applied Mathematics,2006.466-481.
  • 6JIANG Guirong,LU Qishao,QIAN Linning. Complex dynamics of a Holling type Ⅱ prey-predator system with state feedback control[J].Chaos,Solitons and Fractals,2007.448-461.
  • 7NIE Linfei,PENG Jigen,TENG Zhidong,HU Lin. Existence and stability of periodic solution of a LotkaVolterra predator-prey model with state-dependent impulsive effects[J].Journal of Computational and Applied Mathematics,2009.544-555.
  • 8ZHU Changrong,ZHANG Weinian. Linearly independent homoclinic bifurcations parameterized by a small function[J].Journal of Differential Equations,2007.38-57.
  • 9陈兰荪.害虫治理与半连续动力系统几何理论[J].北华大学学报(自然科学版),2011,12(1):1-9. 被引量:56
  • 10陈兰荪;井竹君.捕食者-食饵相互作用中微分方程的极限环存在性和唯一性[J]科学通报,1984521-523.

二级参考文献16

  • 1Clark C W. Mathematical Bioeconomics: the Optimal Management of Renewable Resources [M]. New York:John Wiley & Sons, 1976.
  • 2Clark C W. Bioeconomic Modeling and Resource Management [C]//Levin S A, Hallam T G, Grose L J eds. Applied Mathematical Ecology, New York : Springer-Verlag, 1989.
  • 3Clark C W. Mathematical Bioeconomics: the Optimal Management of Renewable Resources [M]. New York:John Wiley & Sons, 1990.
  • 4GohB S. Managenment and Analysis of Biological Populations[M]. Amsterlan:Elsevier Scientific Publishing Company, 1980.
  • 5Bonotto E M. Flows of Characteristic in Impulsive Semidynamical Systems [J]. J. Math Anal App1,2007 ,332 :81-96.
  • 6Bonotto E M. LaSalle' s Theorems in Impulsive Semidynamical Systems[J]. Cadernos de Matem Atica,2008,9:157-168.
  • 7Bonotto E M, Federson M. Limit Sets and the Poincar6-Bendixson Theorem in Impulsive Semidynamical Systems [J]. J Differential Equations ,2008,244:2334-2349.
  • 8Bonotto E M, Federson M. Poisson Stability for Impulsive Semidynamical Systems [J]. Nonlinear Analysis,2009,71 : 148-6156.
  • 9Bonotto E M, Federson M. Topological Conjugation and Asymptotic Stability in Impulsive Semidynamical Systems [J]. J Math Anal App1,2007,326:869-881.
  • 10S K Kaul. Stability and Asymptotic Stability in Impulsive Semidynamical Systems [J]. J Appl Math. Stochastic Anal, 1994, 7(4) :509-523.

共引文献55

同被引文献8

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部