期刊文献+

基于贝叶斯匹配追踪的SAR图像重构 被引量:3

SAR image reconstruction based on Bayesian matching pursuit
下载PDF
导出
摘要 结合稀疏贝叶斯学习和压缩感知(CS)理论,提出了一种基于贝叶斯匹配追踪的SAR图像重构的新方法。该方法将SAR图像的重构过程看做是一个线性回归问题,而待重建的图像是该回归模型中的未知权值参数。利用高斯混合参数对未知权值参数赋予确定的先验条件概率分布,用于限制权值参数的稀疏性。该方法能够得到重建图像所需要的一组具有较高后验概率密度的模型,从而实现图像在最小均方误差(MMSE)意义下的重构;对于高斯混合模型中参数未知的情况,可以采用基于EM的最大似然估计方法估计。实验结果表明,基于贝叶斯匹配追踪的SAR图像重构方法能够获得精确的重建图像,并且能够有效地保持图像的细节特征。 Based on sparse learning and CS theory,this paper proposed a new SAR image reconstruction method.The process of image reconstruction was treated as a linear regression problem and the image to reconstruction was the unknown parameters of the regression model.It used Gaussian mixture parameters to predefine the prior conditional density of the unknown parameters in order to confine the sparsity.A set of model could be achieved that could be used to reconstruct the image in sense of MMSE.When the hyperparameters were unknown,the method based on EM could be used to estimate.Simulation results indicate that the Bayesian matching pursuit based method can get a precisely reconstructed image and the details can be preserved.
出处 《计算机应用研究》 CSCD 北大核心 2012年第7期2722-2724,2736,共4页 Application Research of Computers
基金 中央高校基础研究基金资助项目(ZYGX2009Z005) 国家自然科学基金资助项目(60772143)
关键词 压缩感知 SAR图像 高斯混合参数 贝叶斯 EM compressive sensing(CS) SAR image Gaussian mixture parameter Bayesian EM
  • 相关文献

参考文献13

  • 1KUTYNIOK G. Data separation by sparse representations,compressed sensing:theory and applications[M].Cambridge:Cambridge University Press,2011.
  • 2CANDES E J,ROMBERG J,TAO T. Robust uncertainty principles:exact signal reconstruction from highly incomplete frequency information[J].IEEE Trans on Information Thaory,2006,(02):489-509.
  • 3CANDES E J,WAKIN M B. An introduction to compressive sampling[J].IEEE Signal Processing Magazine,2008,(02):21-30.doi:10.1109/MSP.2007.914731.
  • 4DONOHO D L. Compressive sensing[J].IEEE Transactions on Information theory,2006,(04):1289-1306.doi:10.1109/TIT.2006.871582.
  • 5WIPF D P,RAO B D. Sparse Bayesian learning for basis selection[J].IEEE Transactions on Signal Processing,2004,(08):2153-2164.
  • 6LARSSON E G,SEL(E)N Y. Linear regression with a sparse parameter vector[J].IEEE Transactions on Signal Processing,2007,(02):451-460.doi:10.1109/TSP.2006.887109.
  • 7ELAD M,YAVNEH I. A weighted average of sparse representations is better than the sparsest one alone[J].IEEE Transactions on Information theory,2009,(10):4701-4714.
  • 8TSQIQ Y,DONOHO D L. Extensions of compressed sensing[J].Signal Processing,2006,(03):549-571.doi:10.1016/j.sigpro.2005.05.029.
  • 9方红,王年,章权兵,韦穗.基于稀疏贝叶斯学习的图像重建方法[J].中国图象图形学报,2009,14(6):1064-1069. 被引量:10
  • 10NEAL R,HINTON G E. A view of the EM algorithm that justifies incremental,sparse,and other variants[A].Cambridge,MA:The MIT Press,1999.355-368.

二级参考文献12

  • 1Donoho D. Compressed sensing[ J]. IEEE Transactions Information Theory, 2006,52 ( 4 ) : 1289-1306.
  • 2Candes E J, Romberg J, Tao T. Signal recovery from incomplete and inaccurate measurements [ J ]. Communications on Pure and Applied Mathematics, 2005,59 ( 8 ) : 1207-1223.
  • 3Donoho D, Huo X. Uncertainty principles and ideal atomic decompositions[J]. IEEE Transactions on Information Theory, 2001,47 ( 7 ) :2845-2862.
  • 4Donoho D, Elad M. Maximal sparsity representation via 11 minimization [J]. Proceedings of the National Academy of Science, 2003,100(5 ) :2197-2202.
  • 5Candes E J, Tan T. Decoding by linear programming [ J ]. IEEE Transactions on Information Theory, 2005, 51(12) :4203-4215.
  • 6Tropp J, Gilbert A. Signal recovery from partial information via orthogonal matching pursuit [ J ]. IEEE Transactions on Information Theory, 2007, 53( 12): 4566-4666.
  • 7Tipping M. The relevance vector machine [ A]. In: Solla S A, Leen T K, Muller K-R. Advances in Neural Information Processing Systems 12[ C], Cambridge, MA,USA:MIT Press, 2000: 652-658.
  • 8Figueiredo M. Adaptive sparseness for supervised learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(9) : 1150-1159.
  • 9Vapnik V N. The Nature of Statistical Learning Theory[ M ]. New York: Springer2Verlag, 1995.
  • 10Bernardo J M, Smith A F M. Bayesian Theory[ M]. Wiley,1994.

共引文献9

同被引文献19

  • 1尚晓清,杨琳,赵志龙.基于非凸正则化项的合成孔径雷达图像分割新算法[J].光子学报,2012,41(9):1124-1129. 被引量:7
  • 2汪雄良,王正明,赵侠,朱炬波.基于l_k范数正则化方法的SAR图像超分辨[J].宇航学报,2005,26(B10):77-82. 被引量:11
  • 3Donoho D L. Compressed sensing [ J]. IEEE Transactions on Information Theory ,2006,52 ( 4 ) : 1 289-1 306.
  • 4Tropp J, Gilbert A. Signal recovery from random measurements via orthogonal matching pursuit [ J ]. IEEE Trans on Information Theory ,2007,53 ( 12 ) :4 655-4 666.
  • 5Dai W, Milenkovic O. Subspace pursuit for compressive sensing signal reconstruction [J ]. IEEE Trans on Information Theory, 2009,55 ( 5 ) : 2 230 -2 249.
  • 6Needell D,Tropp J A. CoSaMP:iterative signal recovery from incomplete and inaccurate samples [ J ]. Applied and Computational Harmonic Analysis,2009,26(3):301-321.
  • 7Blumensath T, Davies E. herative thresholding fur sparse approximations [ J ]. Journal of Fourier Analysis and Applications ,2008,14 ( 5 ) :629-654.
  • 8Blumensath T, Davies E. lterative thresholding for compressed sensing[ J]. Applied and Computational Harmonic Analysis, 2009,27 ( 3 ) :265-274.
  • 9Bhattacharya S, BlumensathT, MulgrewB, et al. Fast encoding of synthetic aperture radar raw data using compressed sensing [ C ] // IEEE Workshop on Statistical Signal Processing. Madison. USA: IEEE Press, 2007:448-452.
  • 10Chartrand R, Staneva V. Restricted isometry properties and nonconvex compressive sensing [ J ]. Inverse Problems, 2008, 24(3) :1-14.

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部