期刊文献+

适用于遮挡车辆检测的子块带权模板匹配方法 被引量:4

Subblock-weighted template matching method applied to overlapped vehicle detection
下载PDF
导出
摘要 针对多车辆跟踪过程中的遮挡问题,提出一种基于梯度方向直方图的子块带权模板匹配方法。该方法先对目标分块,并提取每块的梯度方向直方图,然后利用核函数为各块赋予不同权值,并采用子块带权特征匹配度度量方法计算目标模型与搜索窗的匹配度,进而获取最佳匹配。最后将该方法应用于多车辆跟踪过程中的遮挡车辆跟踪与检测。实验表明,该方法具有良好的精确度和鲁棒性。 To solve the occlusion problem in tracking of multiple vehicles,this paper proposed a subblock-weighted template matching method based on histograms of oriented gradients,which first divided the object into blocks and extracted histograms of oriented gradients for each block.By weighting different blocks into different grades using kernel function,this method calculated the similarity between the target model and the searching window based on the subblock-weighted feature matching degree measurement method,hereby,obtained the best matching region with the maximum calculation result.Finally,this paper used this method to tracking of the overlapped vehicle in multi-vehicle tracking process.The experiment result shows that this method embodies higher accuracy and robustness.
出处 《计算机应用研究》 CSCD 北大核心 2012年第7期2751-2753,共3页 Application Research of Computers
基金 安徽省教育厅自然科学基金资助项目(KJ2011B142 KJ2011A251 KJ2011Z330)
关键词 梯度方向直方图 模板匹配 遮挡 车辆检测 智能交通 histograms of oriented gradients template matching occlusion vehicle detection intelligent transportation
  • 相关文献

参考文献8

二级参考文献56

  • 1朱磊.一种基于直方图统计特征的直方图匹配算法的研究[J].计算技术与自动化,2004,23(2):48-51. 被引量:15
  • 2潘薇,游志胜,吴鵾,王宁.基于模糊聚类和卡尔曼滤波的运动目标检测[J].计算机应用,2005,25(1):123-124. 被引量:10
  • 3彭宁嵩,杨杰,刘志,张风超.Mean-Shift跟踪算法中核函数窗宽的自动选取[J].软件学报,2005,16(9):1542-1550. 被引量:165
  • 4李培华.一种改进的Mean Shift跟踪算法[J].自动化学报,2007,33(4):347-354. 被引量:53
  • 5Comaniciu D, Ramesh V, Meer P. Kernel-based object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(5): 564-577.
  • 6Collins R T. Mean-shift blob tracking through scale space. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Madison Wisconsin, USA: IEEE, 2003. 234-240.
  • 7Yilmaz A. Object tracking by asymmetric kernel mean shift with automatic scale and orientation selection. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis, USA: IEEE, 2007. 1-6.
  • 8Yang C J, Duraiswami R, Davis L S. Efficient mean-shift tracking via a new similarity measure. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. San Diego, USA: IEEE, 2005. 176-183.
  • 9Lowe D G. Distinctive image features from scale-invariant key-points. International Journal of Computer Vision, 2004, 60(2): 91-110.
  • 10Dalai N, Triggs B. Histograms of oriented gradients for human detection. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. San Diego, USA: IEEE, 2005. 886-893.

共引文献45

同被引文献18

  • 1郭磊,徐友春,李克强,连小珉.基于单目视觉的实时测距方法研究[J].中国图象图形学报,2006,11(1):74-81. 被引量:98
  • 2M<4~IUGH J, KONRAD J, SALIGRAMA V, et +ft. Foreground-adair- rive background subtr~lction [ J ]. IEEE Signal Processing Letter, 2009, 16(5): 390-393.
  • 3HE Yu-i;eng, LI Jia-tian, WANG llua, et M. Adaptive, w~lfich, shad- ox~ detection algorithm in highway[ C ]//Pmc of IEEE International Symposium on Compulalional Intelligence and I)~'sign. 2012: 240- 243.
  • 4CUCCHIARA R, GRANA C, PICCARDI M, et .I. Detecting mo- ving objects, ghosts, anti slladows in video streams [ J ]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2003, 25 (10) : 1337- 1342.
  • 5YANG Tao, PAN Quart, 1,1 S Z, el a/. Multiph, h~,,.c, based hack- gn~und maintenance in complex environment[ C]//Proc of the 3rd In- ternational C~mferen~'c ~,n Image and Graphics. 2004 : 112- 1 t5.
  • 6STAUFFER C, GRIMSON W. Learning patterns of activity using re- ',d-time tracking [ J]. IEEE Yrans on Pattern Recognition and Machine intelligence, 2000, 22 ( 8 ) : 747- 75.
  • 7LEE D S. Improved adaptive mixture learning for robust video hack- ground modeling [ C ]//Proc of IAPR Workshop on Machine Vision for Applications. 2002 : 443-446.
  • 8WANG ~ Z. Integrated region-based image retrieval [M]. Boston: Kluwer Academic Publishers, 2001.
  • 9LEE J E, JIN Rong, JAIN A K, et al. Image retrieval in forensics: Tattoo image database application[ J]. IEEE Multi-Media, 2011 ,19(1) : 40-49.
  • 10KEKRE H B, THEPADE S D, SARODE T K, et al. Image retrieval using texture features extracted using LBG, KPE, KFCG, KMCG, KEVR with assorted color spaces[ J]. international Journal of Ad- vances in Engineering & Technology, 2012,2( 1 ) :520-531.

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部