期刊文献+

特征和分类器联合优化的网络入侵检测算法 被引量:5

Network intrusion detection algorithm based on jointly optimization of feature selection and classifier
下载PDF
导出
摘要 为了提高网络入侵检测正确率,利用特征选择和检测分类器参数间的相互联系,提出一种特征和分类器联合优化的网络入侵检测算法。联合优化方法将网络状态特征和分类器参数作为遗传算法的个体,网络入侵检测正确率作为个体适应度函数,通过选择、交叉和变异等遗传操作获得最优特征和分类器参数,利用KDD 1999数据集对联合优化算法进行验证性测试。实验结果表明,相对于其他入侵检测算法,联合优化算法既解决了特征与分类器不匹配带来的入检测检测能力下降,又提高了网络入侵检测正确率和效率,为网络入侵检测提供了一种新的研究思路。 To improve network intrusion detection rate, this paper proposes a network intrusion detection algontlam based on joint optimization algorithm for feature selection and classifier. The algorithm uses the relationship between the feature selection and classifier parameters. The feature and classifier parameters are taken as genetic algorithm individuals while the network intrusion detection rate as the evaluation function of genetic algorithm, then the optimization parameters are obtained by selection, crossover and mutation of genetic algorithm, and the joint optimization algorithm is tested by KDD 1999 data. The experimental results show that the proposed algorithm has overcome the degression of detection ability resulting from unmatched of the features and the classifier parameters, and has improved the network intrusion detection rate compared with other algorithms; it provides a new way for network intrusion detection.
作者 宋宇翔 刘琰
出处 《计算机工程与应用》 CSCD 2012年第19期77-81,共5页 Computer Engineering and Applications
关键词 网络入侵 特征选择 支持向量机 遗传算法 network intrusion feature selection Support Vector Machine (SVM) Genetic Algorithm (GA)
  • 相关文献

参考文献10

  • 1Sung A H.Identify important features for intrusion detec- tion using support vector machines and nemal networks[C]// Proceedings of the IEEE Symposium on Application and the Intemet,2003:209-217.
  • 2Martin B,Rossouw V S.Utilizing fuzzy logic and trend analysis for effective intrusion detection[J].Computers and Security, 2003,22 (5) : 423 -434.
  • 3Kang G S, Wang H, Zhang D.Change-point monitoring for the detection of Dos attacks[J].IEEE Transactions on Dependable and Secure Computing, 2004, 1 (4): 193-208.
  • 4孙大朋.改进的模糊聚类算法在入侵检测中的研究[J].计算机与数字工程,2010,38(3):88-91. 被引量:6
  • 5SungA H, Mukkamala S.Identifying important features for intrusion detection using support vector machines and neural networks[C]//Proceeding of the Symposium on Applications and the Internet.Dublin: Trinity College Dublin Press,2003:209-216.
  • 6张雪芹,顾春华.一种网络入侵检测特征提取方法[J].华南理工大学学报(自然科学版),2010,38(1):81-86. 被引量:28
  • 7朱丽华,刘以安,魏敏.基于QPSO优化投影寻踪的网络入侵检测方法[J].计算机工程与应用,2011,47(28):80-82. 被引量:4
  • 8John M, Atsushi I.Support vector classifiers and net- work Intrusion Detection[C]//Proceedings of IEEE Inter- national Conference on Fuzzy System, Budapest, Hungary, 2004: 7803-8353.
  • 9Qi S, Jiang J H.Modified particle swarm optimization algorithm for variable selection in MLR and PLS modeling: QSAR studies of antagonism of angiotensin II antago- nists[J].European Journal of Pharmaceutical Sciences, 2004, 22(2/3) : 145-152.
  • 10Sridhar R, Rajeev R, Kyuseok S.Efficient algorithms for mining outliers from large data sets[C]//Proceedings of the ACM SIGMOD International Conference on Man- agement of Data, Dallas, Texas, USA, 2000 : 427-438.

二级参考文献28

  • 1李玮,范九伦.基于新的聚类算法的入侵检测[J].计算机工程,2006,32(7):149-150. 被引量:6
  • 2陈友,程学旗,李洋,戴磊.基于特征选择的轻量级入侵检测系统[J].软件学报,2007,18(7):1639-1651. 被引量:78
  • 3Blum A L, Langley P. Selection of relevant features and examples in machine learning [J]. Artificial Intelligence, 1997,97(1/2) :245-271.
  • 4Baglioni M, Furletti B, Turini F. DrC4.5 : improving C4. 5 by means of prior knowledge [ C ] //Proc of the ACM Symp on Applied Computing. Santa Fe : ACM, 2005 : 474- 481.
  • 5Kim D S, Park J S. Network based intrusion detection with support vector machines [ C ] // Information Networking. Berlin/Heidelberg : Springer-Verlag, 2003:747-756.
  • 6Kim D S, Nguyen H N, Ohn S Y. et al. Fusions of GA and SVM for anomaly detection in intrusion detection system [ C ] //Advances in Neural Networks. Berlin/Heidelberg : Springer-Verlag, 2005 : 415 - 420.
  • 7Theodoridis Sergios, Koutroumbas Konstantinos. Pattern recognition [ M ]. 2nd ed. Salt Lake City: Elsevier Academic Press, 1999.
  • 8Cortes C, Vapnik V. Support vector networks [ J ]. Machine Learning, 1995,20 ( 3 ) : 273- 297.
  • 9UCI machine learning repository : KDDCUP' 99 dataset [ EB/OL]. ( 1999- 01- 01 ). http: // archieve, ics. uci. edu/ml/datasets.
  • 10Mukkamala Srinivas, Sung Andrew H. Feature ranking and selection for intrusion detection using support vector machines [ R]. New Mexico: New Mexico Institute of Mining and Technology Socorro,2002.

共引文献33

同被引文献51

引证文献5

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部