摘要
针对一般小波神经网络存在的学习时间长,网络预测精度低的问题,提出了对网络输入层权值初始值进行归一化处理的优化方法,改进了原有小波神经网络。将改进后的模型应用于某市轨道交通1号线珠江路站深基坑水平变形预测中。监测结果表明,网络输出值与实测值吻合很好,优化后的小波神经网络收敛速度也更快;同时随着大量最新的监测数据输入到网络中学习,将使深基坑水平变形预测更加精确。
In order to solve the ubiquitous problems on cable-stayed bridge's loading test which are expensive cost and long testing time, this paper builds a practical cable-stayed bridge' s finite element model, analyzes the mechan- ics characteristics of cable-stayed bridge, and puts forward a method of loading test conditions' merging. Finally, Dezhou bridge' s loading tests are finished with the merging method. The research results show that for cable-stayed bridges, beam maximum moment condition and beam maximum deflection condition can combine into one condi- tion; and tower maximum moment condition and top tower horizontal displacement can combine into one condition. The merging method can be applied to practical bridge' s loading test and can popularize to other long-span bridge type' s loading test. In summery, the research result has a wide application prospect.
出处
《计算机工程与应用》
CSCD
2012年第19期225-229,共5页
Computer Engineering and Applications
基金
国家自然科学基金(No.61063007)
江西省教育厅科技计划项目(No.GJJ11530)
江西省高等学校重点学科项目
关键词
基坑变形
工程安全
预测研究
小波神经网络
参数优化
pit deformation
engineering safe
predict research
wavelet neural network
parameter optimization