期刊文献+

不确定性目标的CLARANS聚类算法 被引量:2

CLARANS Clustering Algorithm of Uncertainty Objects
下载PDF
导出
摘要 在传统CLARANS聚类算法基础上,提出一种针对不确定性目标的CLARANS聚类算法。在该算法中,待聚类的每个不确定性目标都被表示成高斯混合模型,即高斯分布的一个加权和,并将Kullback-Leibler散度作为不确定性目标间的距离测度。在图片数据库上的实验结果表明,该算法具有较高的聚类精度。 Based on classical CLARANS clustering algorithm,a new clustering algorithm of uncertain objects is proposed in this paper.In the algorithm,each uncertain object is given as a Gaussian Mixture Model(GMM) which is the weighted sum of Gaussian distribution,and Kullback-Leibler Divergence(KLD) is used as distance measure between uncertain objects.Experimental result of image dataset shows the higher clustering precision of algorithm.
作者 何童
出处 《计算机工程》 CAS CSCD 2012年第11期56-58,共3页 Computer Engineering
基金 "中财121人才工程"青年博士发展基金资助项目(QBJZH201001)
关键词 高斯分布 高斯混合模型 Kullback-Leibler散度 CLARANS算法 不确定性目标 聚类算法 Gaussian distribution Gaussian Mixture Model(GMM) Kullback-Leibler Divergence(KLD) CLARANS algorithm uncertainty objects clustering algorithm
  • 相关文献

参考文献11

  • 1李帅,王新军,高丹丹.基于内部空间特性的PSO聚类算法[J].计算机工程,2009,35(5):197-199. 被引量:6
  • 2Titterington D M, Smith A F M, Makov U E. Statistical Analysis of Finite Mixture Distribution[M]. New York, USA: Wiley, 1985.
  • 3Solomon K. Information Theory and Statistics[M]. New York, USA: Dover Publications Inc., 1968.
  • 4Hershey J R, Olsen P A. Approximating the Kullback Leibler Divergence Between Gaussian Mixture Models[C]//Proc. of ICASSP'07. [S. L]: IEEE Press, 2007: 317-320.
  • 5Penny W D. Kullback-Liebler Divergences of Normal, Gamma, Dirichlet and Wishart Densities[C]//Proc. of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM Press, 2001.
  • 6Chau M, Cheng R, Kao Ben, et al. Uncertain Data Mining: An Example in Clustering Location Data[C]//Proc. of PAKDD'06. [S.L]: IEEE Press, 2006: 199-204.
  • 7Ng R, Han Jiawei. Efficient and Effective Clustering Methods for Spatial Data Mining[C]//Proc. of the 20th International Conference on Very Large Data Bases. San Francisco, USA: Morgan Kaufmann Publishers Inc., 1994:144-155.
  • 8Thinkstock[EB/OL]. (2011-02-18). http://www.hemera.com/hem era/Corel.
  • 9Greenspan H, Goldberger J, Ridel L. A Continuous Probabilistic Framework for Image Matching[J]. Computer Vision and Image Understanding, 2001, 84(3): 384-406.
  • 10Wyszecki G, Stiles W. Color Science: Concepts and Methods, Quantitative Data and Formula[M]. New York, USA: John Wiley and Sons, 1982.

二级参考文献6

  • 1徐晓华,陈崚.一种自适应的蚂蚁聚类算法[J].软件学报,2006,17(9):1884-1889. 被引量:55
  • 2Last M, Klein Y, Kandel A. Knowledge Discovery in Time Series Databases[J]. IEEE Trans. on Systems Man and Cybernetics, 2001, 31(1): 160-169.
  • 3Kennedy J, Eberhart R C. Particle Swarm Optimization[C]//Proc. of IEEE International Conference on Neural Network. [S.l.]: IEEE Press, 1995: 1942-1948.
  • 4Blake C L. UCI Machine Learning Repository of Machine Learning Databases[EB/OL]. (1998-10-20). http://mlearn.ics.uci.edu/data bases/.
  • 5Selim S Z, Ismail U A. K-means-type Algorithms: A Generalized Convergence Theorem and Characterization of Local Optimality[J]. IEEE Trans. on Pattern Anal. Machine Intell., 1984, 6(6): 81-87.
  • 6Laszlo O M, Mukherjee P S. A Genetic Algorithm that Exchanges Neighboring Centers for K-means Clustering[J]. Pattern Recognition Letters, 2007, 28(16): 2359-2366.

共引文献5

同被引文献9

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部