期刊文献+

基于遗传BP神经网络的主被动遥感协同反演土壤水分 被引量:34

Soil moisture retrieval based on GA-BP neural networks algorithm
下载PDF
导出
摘要 提出了一种基于遗传神经网络算法的主被动遥感协同反演地表土壤水分的方法.首先,建立一个BP神经网络,并采用遗传算法对BP网络的节点权值进行了优化.然后分别将TM数据(TM3,TM4,TM6)、不同极化和极化比的(VV,VH,VH/VV)ASAR数据作为神经网络的输入,土壤水分含量作为网络的输出,用部分实测数据对网络进行训练并反演得到研究区土壤水分布图.最后,利用地面实测数据分别对遗传神经网络优化算法的有效性和主被动遥感协同反演的效果进行了验证,结果表明,新优化算法是有效可行的,且TM和ASAR协同反演的结果比两者单独反演的结果明显要好,体现了主被动遥感协同反演土壤水分的优势与潜力. A new semi-empirical model is presented for soil moisture content retrieval, using ENVISAT- ASAR and LANDSAT-TM data collaboratively. Firstly, a back propagation (BP) neural network algorithm ( GA ) is introduced, and a genetic algorithm is applied to optimize the weights of the node of BP neural network. Then the TM bands ( TM3, TM4, TM6) and ASAR data(VV, VH, VH/VV) are taken as the input of the GA-BP neural network, and the output corresponds to the ground soil moisture. The partial field measurements of soil moisture are used as training samples to train the network and to achieve the map of soil moisture distribution. The field measurements are used to test the validity of the BP neural network algorithm and effectiveness of the active and passive remote sensing cooperative inversion. The comparison between the inversion using single data set(TM or ASAR), and the cooperative inversion of active and passive remote sensing data demonstrates that the new algorithm is more effective, and shows considerable potential in soil moisture retrieval by integrating active and passive remote sensing data.
出处 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2012年第3期283-288,共6页 Journal of Infrared and Millimeter Waves
基金 国家重点基础研究发展计划(973项目)"陆表生态环境要素主被动遥感协同反演理论与方法"(2007CB714407) 中国自然科学基金(41101321) 中国测绘科学研究院科研基本业务经费(7771023和7771017)联合资助~~
关键词 主被动遥感 GA-BP神经网络 土壤水分 反演 active and passive remote sensing GA-BP neural network soil moisture inversion
  • 相关文献

参考文献4

二级参考文献23

  • 1熊桢.高光谱遥感图像分类技术研究.中国科学院遥感应用研究所博士学位论文[M].,2000.38-63.
  • 2杨存武 肖金才 等.实用型模块化成像光谱仪光学系统的研制.第十二届全国遥感学术交流会论文集(光盘版)[M].,2000..
  • 3刘玉洁 杨忠东等.MODIS遥感信息处理与算法[M].北京:科学出版社,2001.198~232.
  • 4Wan Z, J Dozies. Land--surface temperature measurement from space: physical principles and inverse modeling. IEEE Trans Geosciences and Remote Sensing, 1989, 27(3) : 268-278.
  • 5Kavsoglu T, Mather P M. Pruning artificial neural networks: an example using land cover classification of multi-sensor images. International Journal of Remote Sensing, 1999, 20(14) : 2787-2803.
  • 6H Mural, S Omatu. Remote sensing image analysis using a neural network and knowledge based processing. International Journal of Remote Sensing, 1997, 18(4): 811-828.
  • 7Simpson J J, Mcintir J T. A recurrent neural network classifier for improved retrievals of areal extent of snow cover. IEEE Transaction on Geoscience and Remote Sensing, 2001,39(10) : 2135-2147.
  • 8Zhang J, Foody G M. Fully-fuzzy supervised classification of sup-urban land cover foam remotely sensed imagery: statistical and artificial neural network approaches. International Journal of Remote Sensing, 2001, 22(4) : 615-628.
  • 9Y Ito, S Omatu. Extended LVQ neural network approach to land cover mapping. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(1): 313-317.
  • 10Y Ito, S. Omatu. Polarimetric SAR data classification using competitive neural networks. International Journal of Remote Sensing,1998, 19(14): 2665-2684.

共引文献103

同被引文献365

引证文献34

二级引证文献224

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部