期刊文献+

基于蚁群的区域簇头选择路由算法 被引量:1

Routing algorithm of cluster heads selection in regions based on ant colony algorithm
下载PDF
导出
摘要 针对低能量自适应分簇路由LEACH存在的簇头分布不均和路由通信代价过大的缺陷,提出了一种基于蚁群的区域簇头选择路由算法(LEACH-ACANEW).首先,将整个网络划分为若干个Dirichlet图单元,然后综合考虑节点剩余能量与消耗能量的关系,在单元区域内选取簇头,最后通过优化人工蚂蚁的路径选择机制,搜索到簇头和汇聚节点之间数据通信的全局最优路径.仿真试验表明,与其他同类算法相比,LEACH-ACANEW算法在节省节点能量消耗和延长网络生命周期方面,效果明显. A routing algorithm of cluster heads selection in regions(LEACH-ACANEW) based on ant colony algorithm was proposed by analyzing the problems of Low-Energy Adaptive Clustering Hierarch(LEACH) that of uneven cluster heads distribution and excessive cost caused by routing communication.Firstly,divided the whole network into several Dirichlet cell.Then selected cluster heads in each cell with considering the relationship of residual energy and consumed energy.At last,optimized path selection mechanism of artificial ant in order to search the global optimal data communication path between cluster heads and sink node.The simulation results show that LEACH-ACANEW performances more significant on saving energy consumption and prolonging the network life cycle than other similar algorithms.
出处 《长沙理工大学学报(自然科学版)》 CAS 2012年第2期75-80,共6页 Journal of Changsha University of Science and Technology:Natural Science
基金 湖南省自然科学基金资助项目(09JJ6094) 湖南省科技计划资助项目(2011FJ3082)
关键词 无线传感器网络 分簇路由 区域划分 蚁群算法 信息素 局部最优 wireless sensor network(WSN) clustering routing regional division ant colony optimization(ACO) pheromone local optimum
  • 相关文献

参考文献6

二级参考文献25

  • 1DORIGO M, BIRATFARI M, STUZLE T. Ant colony optimization [J]. IEEE Computational Intelligence Magazine, 2006,1 (4) : 28- 39.
  • 2OKDEM S,KARABOGA D. Routing in wireless sensor networks using ant colony optimization[ C ]//Proc of the 1 st NASA/ESA Conference on Adaptive Hardware and Systems. 2006:401-404.
  • 3ZHANG Ying, KUHN L D, FROMHERZ M P J. Improvements on ant routing for sensor networks [ C ]//Proc of the 4th International Workshop on ant Colony Optimization and Swarm Intelligence. Berlin :Springer, 2004 : 154-165.
  • 4GAO Wei. Study on immunized ant colony optimization[ C]//Proc of the 3rd International Conference on Natural Computation. 2007:759-763.
  • 5RAJENDRAN C, ZIEGLER H. Two ant-colony algorithms for minimizing total flowtime in permutation flowshops[ J]. Computers & Industrial Engineering, 2005,48(4) :789-797.
  • 6AKYILDIZ I F, SU W, SANKARASUBRAMANIAM Y. A survey on sensor networks [ J]. IEEE Communications Magazine, 2002, 40 (8): 102-114.
  • 7FAN XIANGNING, SONG YULIN. Improvement on LEACH proto- col of wireless sensor network[ C] // SensorComm 2007: Internation- al Conference on Sensor Technologies and Applications. Washing- ton, DC: IEEE Computer Society, 2007:260-264.
  • 8FAN YIMING, YU JIANJUN. The communication protocol for wire- less sensor network about LEACH[ C]//CISW 2007: International Conference on Computational Intelligence and Security Workshops. Harbin: IEEE, 2007:550 -553.
  • 9SALLIM J, ABDULLAH R, KHADER A T. ACOPIN: An ACO al- gorithm with TSP approach for clustering proteins from protein inter- action network[ C]//Second UKSIM European Symposium on Com- puter Modeling and Simulation. Washington, DC: IEEE Computer Society, 2008:203-208.
  • 10DORIGO M, LUCA MARIA GAMRARDELLA. Ant colony system: A cooperative learning approach to the traveling salesman problem [ J]. IEEE Transactions on Evolutionary Computation, 1997, 1 ( 1 ) : 53 - 66.

共引文献19

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部