期刊文献+

车辆的Harris与SIFT特征及车型识别 被引量:11

Harris Corner and SIFT Feature of Vehicle and Type Recognition
下载PDF
导出
摘要 针对现有车型识别的准确性和实时性不能同时满足要求的问题,提出了复合的图像匹配模型与识别方法.先应用Harris角点对车型初分类,再应用SIFT特征进行细分类,该方法与只利用SIFT特征进行识别的方法相比,在保证识别准确性基本不变的情况下,处理时间减少了近2/3,实时性得到较大改善. Considering to the important factors of accuracy and real-time performance can not meet the require- ment simultaneously in current vehicle recognition, a compound image matching model and a recognition method were developed, namely classifying vehicles firstly by utilizing Harris comer, then classifying vehicles detailedly by using SIFT feature. Compared with the one used SIFT feature only, the method shortens the time of disposal by 2/ 3 under guaranteeing the accuracy to be kept essentially constant, real-time performance was improved greatly.
出处 《哈尔滨理工大学学报》 CAS 2012年第3期69-73,共5页 Journal of Harbin University of Science and Technology
基金 黑龙江省交通运输厅重点项目(201000005)
关键词 车辆识别 HARRIS角点 SIFT特征 图像匹配 vehicle recognition Harris comer SIFT feature image matching
  • 相关文献

参考文献11

  • 1王运琼,游志胜.基于色差均值的快速车窗定位算法[J].计算机应用与软件,2004,21(1):78-79. 被引量:7
  • 2张全元,戴光明,陈良.基于实时视频流的车型识别系统设计[J].微计算机信息,2008,24(31):288-290. 被引量:2
  • 3杜宇人,高浩军.基于车辆轮廓定位匹配的车型识别方法[J].扬州大学学报(自然科学版),2007,10(2):62-65. 被引量:13
  • 4LI Jian, ZHAO Wang-zi, GUO Hui. Vehicle Type Recognition Based on Harris Comer Detector[ C ]//Proceedings of the 2nd In- ternational Conference on Transportation Engineering, ICTE, Chengdu, China,2009:3320 - 3325.
  • 5周爱军,杜宇人.基于视频图像Harris角点检测的车型识别[J].扬州大学学报(自然科学版),2008,11(1):67-70. 被引量:9
  • 6HARRIS C, STEPHENS M. A Combined Corner and Edge Detec- tor [ C]//Proceedings of the Fourth Alvey Vision Conference. Manchester: the University of Sheffield Printing Unit, 1988:147 -151.
  • 7LOWED. Distinctive Image Features from Scale-invariant Key- points [ J ]. International Journal of Computer Vision, 2004, 60 (2): 91-110.
  • 8XIA Li-min. Vehicle Shape Recovery and Recognition Using Ge- netic Models[ C]//Proceedings of the 4th World Congress on In- telligent Control and Automation, Shanghai, China, 2002:1055 - 1059.
  • 9STAUFFER C, GRIMSON W. Adaptive Background Mixture Mod- els for Real-time Tracking[ C ]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Fort Collins:1999, 2:246 - 252.
  • 10CUCCHIARA R, GRANA C, PICCARDI M, et al. Improving Shadow Suppression in Moving Object Detection with HSV Color Information[ C ]//Proceedings of IEEE Intelligent Transportation Systems Conference, Oakland, US, 2001 : 334 - 339.

二级参考文献27

共引文献41

同被引文献59

  • 1宋丹,徐蔚鸿.基于模糊理论的车型识别[J].计算机技术与发展,2006,16(3):47-49. 被引量:12
  • 2段福庆,吴福朝,胡占义.基于平行性约束的摄像机标定与3D重构[J].软件学报,2007,18(6):1350-1360. 被引量:11
  • 3范伊红,彭海云,张元.基于SVM的车型识别系统的设计与实现[J].微计算机信息,2007,23(03S):296-297. 被引量:5
  • 4H U ANG DENGY UAN. Feature-based vehicle, flow analysis andmeasurement for a real-time traffic surveil- lance system[J]. Journal of Information Hiding and Multi- media SignalProcessing, 2012,3(3) : 282-296.
  • 5M.KHELIL, M.BOUDRAA.Claaification of De- fects by the SVM Method[J].ElectronicScienceandEngineering, 2010,1(9):1423 1428.
  • 6YUJI IWAHORI, DEEPAK KUMAR. Improved Defect Classification of Printed Circuit Board Using SVM[J]. Intelligent Decision Technologies, 2010, 16(9) : 355-363.
  • 7WANGYU,LILEI,SHI JIANFENG.A New Vehicle Recognition Approach Based on Graph Spectral Theory and BP Neural Network[el.International Conference on Com- puter Science and Electronics Engineering, 2012: 84-86.
  • 8ECKER A, JEPSON A D. Polynomial shape from shading [C] //Proceedings of IEEE Computer So- ciety Conference on Computer Vision and PatternRecognition. San Francisco, CA.. IEEE Comp Soc, 2010.
  • 9NOAKES L, KOZERA R. Nonlinearities and noise reduction in 3-source photometric stereo EJ]. J Math Imag Vision, 2003, 18(2): 119.
  • 10Warren P A, Mamassian P. Recovery of surface pose from texture orientation statistics under per- spective projection [J]. Biolog Cybern, 2010, 103 (3) : 199.

引证文献11

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部