期刊文献+

融合语言知识的统计句法分析 被引量:5

Statistical parsing with linguistic features
下载PDF
导出
摘要 利用语义、语法等语言知识,建立一种分层句法分析统计模型,并进行句法分析实验。研究结果表明:该模型具有规则和统计相结合的特点,且在层次分析的不同阶段,根据不同的语法、语义、语用特性采用不同的方法和不同的统计模型;该模型结合分词、词性标注进行句法分析,是一个词汇化的句法分析模型,可同时考虑多个语义依存关系;采用该模型,精确率和召回率分别为87.23%和86.15%,其综合指标F与头驱动句法分析模型的相比提高了5.25%。 By incorporating linguistic features such as semantic dependency and syntactic relations, a novel statistical parsing model was proposed, and experiments were conducted for the refined statistical parser. The results show that the mode not only takes advantage of linguistic features such as semantic dependency or syntactic relations, but also considers context such as adjoining words. The model can take advantage of a few semantic dependencies at the same time. It is a parser based on lexicalized model. It achieves 87.23% precision and 86.15% recall using the model, and comprehensive index F is improved by 5.25% compared with that using the head-driven oarsing model.
作者 袁里驰
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第3期986-991,共6页 Journal of Central South University:Science and Technology
基金 国家自然科学基金资助项目(60763001) 江西省自然科学基金资助项目(2009GZS0027 2010GZS0072)
关键词 自然语言处理 词聚类 中心词驱动 句法分析统计模型 natural language processing word clustering head-driven parsing model statistical parsing model
  • 相关文献

参考文献22

  • 1Manning C D, Schutze H. Foundations of statistical natural language processing[M]. London: the MIT Press, 1999: 184-197.
  • 2钟义信.关于“信息-知识-智能转换规律”的研究[J].电子学报,2004,32(4):601-605. 被引量:27
  • 3Joshua G. A bit of progress in language modeling[J]. Computer Speech and Language, 2001, 15(4): 403-434.
  • 4XUE Nian-wen, XIA Fei, Chiou F D, et al. The Penn Chinese treebank: Phrase structure annotation of a large corpus[J]. Natural Language Engineering, 2005, 11 (2): 207-238.
  • 5Fung P, Ngai G, Yang Y S, et al. A maximum-entropy Chinese parser augmented by transformation-based learning[J]. ACM Trans on Asian language Processing, 2004, 3(2): 159-168.
  • 6Ciprian C, Frederick J. Stmctured language modeling[J]. Computer Speech and Language, 2000, 14(4): 283-332.
  • 7赵军,黄昌宁.汉语基本名词短语结构分析模型[J].计算机学报,1999,22(2):141-146. 被引量:28
  • 8刘水,李生,赵铁军,刘鹏远.头驱动句法分析中的直接插值平滑算法[J].软件学报,2009,20(11):2915-2924. 被引量:9
  • 9Aviran S, Siegel P H, Wolf J K. Optimal parsing trees for run-length coding of biased data[J]. IEEE Transaction on information Theory, 2008, 54(2): 841-849.
  • 10ZHOU De-yu, HE Yu-lan. Discriminative Training of the hidden vectors state model for semantic parsing[J]. IEEE Transaction on Knowledge and Data Engineering, 2009, 21(1): 66-77.

二级参考文献108

  • 1钟义信.知识论框架 通向信息-知识-智能统一的理论[J].中国工程科学,2000,2(9):50-64. 被引量:34
  • 2刘挺,车万翔,李生.基于最大熵分类器的语义角色标注[J].软件学报,2007,18(3):565-573. 被引量:73
  • 3Lucien Tesniere. elements de syntaxe structurale[M]. Klincksieck, Paris 1959.
  • 4Ryan McDonald, Fernando Pereira, Kiril Ribarov, Non-projective Dependency Parsing using Spanning Tree Algorithms[M]. HLT-EMNLP 2005.
  • 5Ryan McDonald, Fernando Pereira. Online Learning of Approximate Dependency Parsing Algorithms.[C]//EACL 2006.
  • 6Hiroyasu Yamada and Yuji Matsumoto. Statistical dependency analysis with support vector machines[C]// Proceedings of the 8th InternationalWorkshop on Parsing Technologies (IWPT), 2003.
  • 7Joakim Nivre and Mario Scholz. Deterministic dependency parsing of English text[C]//Proceedings of the 20th International Conference on Computational Linguistics (COLIN G), 2004.
  • 8Adam Berger, Stephen Della Pietra, Vincent Della Pietra. A Maximum Entropy Approach to Natural Language Processing[J]. Computational Linguistics, 1996.
  • 9M. Collins, A new statistical parser based on bigram lexical de-pendencies[C]//Proc. 34th Annu. Meeting Association for Computational Linguistics, May 1996 : 184-191.
  • 10Takuya Matsuzaki,Yusuke Miyao.An efficient clustering algorithm for class-based language models[C].Proceedings of the 7th Conf on Natural Language Learning at HLT-NAACL,2003,119-126.

共引文献115

同被引文献41

  • 1孙静,朱杰,徐向华.一种新的中文词自动聚类算法[J].上海交通大学学报,2003,37(z1):139-142. 被引量:2
  • 2沈家煊.句式和配价[J].中国语文,2000(4):291-297. 被引量:221
  • 3袁里驰.Improved head-driven statistical models for natural language parsing[J].Journal of Central South University,2013,20(10):2747-2752. 被引量:1
  • 4俞士汾,常宝宝,等.计算语言学概论[M].北京:商务印书馆,2004.
  • 5Manning C D, Sehutze H. Foundations of Statistical Natural Language Processing[ M] .London: the M1T Press, 1999:184 - 197.
  • 6Jesus Vilares, Miguel A. Alonso, Manuel Vilares. Extraction of complex index terms in non-English IR: A shallow parsing based approach [ J ]. Information Processing and Manage- ment, 2008,44(4) : 1517 - 1537.
  • 7Aviran S, Siegel P H,Wolf J K. Opfmal Parsing Trees for Run-length Coding of Biased Data[ J] .IEE Transaction on informal/on Theory.2008,54(2) :841 - 849.
  • 8ZHOU De-yu, HE Yu-lan. Discriminative Training of the Hidden Vectors State Model for Semantic Parsing[ J] IEEE, Transaction on Knowledge and Data Engineering. 2009,21 (1):66-77.
  • 9Collins M. Head-Driven Statistical Models for Natural Lan- guage Parsing[ J]. Comptltatiollal Linguistics, 2003,29 (4) : 589 - 637.
  • 10Daniel Jurafsky, James H. Martin. Speech and language processing[ M]. New Jersey, Prentice Hall, 2009:210 - 265.

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部