期刊文献+

改善径向基函数网络泛化性能的主成分分析法及应用研究 被引量:1

Principal component analysis method to improve generalization performance of radial basis function network and its application research
原文传递
导出
摘要 采用主成分分析法 (PCA)来改善径向基函数网络的泛化性能 ,理论上可以根据PCA方法中的主成分累积贡献率 ηK 决定RBF网络的输入层节点数 .实例研究证明 。 The principal component analysis (PCA)method is investigated for improving generalization performance of radial basis function(RBF)network. It becomes theoretically available to determining the number of input neurons in RBF network based on the cumulative contribution rate η\-K which is the result of PCA.Case study shows that the RBF network with introducing PCA method consistently outperforms conventional RBF network in root mean square error and model efficiency R\-y.
出处 《武汉水利电力大学学报》 EI CSCD 2000年第2期85-89,共5页 Engineering Journal of Wuhan University
关键词 人工神经网络 径向基函数 泛化性能 主成分 artificial neural network radial basis function generalization performance principle component analysis method
  • 相关文献

参考文献3

二级参考文献1

共引文献3

同被引文献8

  • 1Wang Ying-Chun, Wu Hong-Xin, Geng Chang-Fu. Study and application of a class of neural networks model with better generalization ability [C]. Intelligent Control and Automation, 2002. Proceedings of the 4th World Congress on,2002,3:2016 ~ 2020.
  • 2Jian-Nan Lin, Shin-Min Song. Modeling gait transitions of quadrupeds and their generalization with CMAC neural networks [J]. Systems, Man and Cybernetics, Part C, IEEE Transactions on ,2002,32:177 ~ 189.
  • 3Horvath G, Szabo T. CMAC neural network with improved generalization property for system modeling[C]. Instrumentation and Measurement Technology Conference, 2002.IMTC/2002. Proceedings of the 19th IEEE ,2002,2:1603 ~1608.
  • 4Ueda N, Nakano R. Estimating expected error rates of neural network classifiers in small sample size situations: a comparison of cross-validation and bootstrap [C]. Neural Networks, 1995, Proceedings. , IEEE International Conference on, 1995,1:101 ~ 104.
  • 5Hiden H G, Willis M J, Tham M T, et al. Non-linear principa components analysis using genetic programming[C]. Genetic Algorithms In Engineering Systems:Innovations and Applications, 1997. GALESIA 97. Second International Conference On (Conf. Pub1. No. 446), 1997:302 ~ 307.
  • 6Malthouse E C. Limitations of nonlinear PCA as performed with generic neural networks [J]. Neural Networks, IEEE Transactions on, 1998,9(1): 165 ~ 173.
  • 7Meng Jinli, Sun Zhiyi. Application of combined neural networks in nonlinear function approximation [C]. Intelligent Control and Automation, 2000. Proceedings of the 3rd World Congress on, 2000,2:839 ~ 841.
  • 8于达仁,王建波,王广雄.应用自组织网络识别火箭发动机泄漏故障[J].推进技术,2001,22(1):47-49. 被引量:6

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部