期刊文献+

基于时间序列的趋势外推模型预测城市轨道交通车站客流的应用 被引量:3

Application of trend extrapolation model based on time series in passenger flow prediction of Urban Transit station
下载PDF
导出
摘要 本文提出了一种基于时间序列的趋势外推模型,对实际应用中的客流数据进行预测,通过预测与节假日客流数据变化规律的分析,对模型进行完善与修正。在地铁日常运营操作过程中,起着辅助判断的作用,并能及时预判问题采取措施进行预防。该算法在城市轨道交通应急平台项目中应用,解决了线路车站日常客流运营维护中出现的大客流事件发生的问题。 This paper presented a method based on trend extrapolation model of time series to predict the data of passenger flow in practical application. The model was perfected and corrected through predicting the holiday passenger flow data and analyzing the changing rule of the data. In the daily operation of the metro, the model played an auxiliary role of judgment to take timely pre-judgment measures for prevention. The algorithm mentioned in this paper firstly used in emergency platform project of Guangzhou Metro, solved the problems of large passenger flow data occurred in the daily operation and maintenance of passenger station.
出处 《铁路计算机应用》 2012年第5期50-51,55,共3页 Railway Computer Application
关键词 客流预测 趋势外推 客运站 passenger flow prediction trend extrapolation passenger station
  • 相关文献

参考文献4

二级参考文献9

共引文献432

同被引文献25

  • 1王卓,王艳辉,贾利民,李平.改进的BP神经网络在铁路客运量时间序列预测中的应用[J].中国铁道科学,2005,26(2):127-131. 被引量:50
  • 2孙晚华,刘钢.铁路城际客流预测模型的研究[J].北京交通大学学报,2005,29(3):84-87. 被引量:14
  • 3WEI Yu, CHEN Muchen. Forecasting the short-term metropassenger flow with empirical mode decomposition and neuralnetworks[J]. Transportation Research Part C, 2012,21(1):148-162.
  • 4WANG Yao, ZHENG Dan, LUO Shimin, ct at. The research ofrailway passenger flow prediction model based on bp neuralnetwork[J]. Advanced Materials Research, 2013,605:2366-2369.
  • 5ZHAO Shuzhi, NI Tonghe, WANG Yang, et al. A new approachto the prediction of passenger flow in a transit system[J].Computers and Mathematics with Applications, 2011, 61:1968-1974.
  • 6李倩.基于路网的高速铁路客流预测方法研究[D].北京:北京交通大学交通运输学院,2001: 87.
  • 7TIAN Qingfei, ZHAO Shuzhi, CAO Yang. Prediction of stationpassenger flow volume based on fractal theoryfJ]. AppliedMechanics and Materials, 2011,99/100: 203-206.
  • 8Zadeh L A. Fuzzy sets and fuzzy systemsfj]. InternationalJournal of General Systems, 1990, 17(2/3): 129-138.
  • 9James M K, Michael R G and James A G. A fuzzy /r-nearestneighbor algorithm[J]. IEEE Transactions on Systems, Man andCybernetics, 1985,15(4): 580-585.
  • 10袁妍,洪晓光.基于模糊-粗糙集的移动对象k近邻预测[J].计算机科学,2008,35(2):140-143. 被引量:2

引证文献3

二级引证文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部