期刊文献+

一类对偶平坦且具有迷向S-曲率的(α,β)-度量

A Class of Dually Flat(α,β)-Metrics with Isotropic S-Curvature
原文传递
导出
摘要 主要研究了一类特殊的(α,β)-度量F=αφ(s),s=β/α,其中φ(s)是关于s的k(k≥2)次多项式,α是一个Riemann度量,β是一个1-形式.得到了如下结果:F是对偶平坦的度量且具有迷向S-曲率的充分必要条件是F是Minkowski度量. In this paper, we study a special class of (α,β)-metrics in the form of F=αФ(s), s=β/α, where α is a Riemannian metric, β is a 1 form and Ф=Ф(s) is a polynomial of degree k(k≥2) in s. We find that this kind of (α,β)-metrie is dually flat and of isotropie S-curvature if and only if it is locally Minkowskian.
出处 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第6期98-100,共3页 Journal of Southwest University(Natural Science Edition)
基金 国家自然科学基金资助项目(10971239)
关键词 Β)-度量 Minkowski度量 S-曲率 多项式 (α,β) metric Minkowski metric S-curvature polynomial
  • 相关文献

参考文献1

二级参考文献13

  • 1Amari, S.-I. and Nagaoka, H., Methods of Information Geometry, Oxford University Press and Amer.Math. Soc., 2000.
  • 2Bao, D., Chern, S. S. and Shen, Z., An Introduction to Riemann-Finsler Geometry, Springer, 2000.
  • 3Amari, S.-I., Differential Geometrical Methods in Statistics, Springer Lecture Notes in Statistics, 20,Springer, 2002.
  • 4Dodson, C. T. J. and Matsuzoe, H., An affine embedding of the gamma manifold, Appl. Sci. (electronic),5(1), 2003, 7-12.
  • 5Dzhafarov, E. D. and Colonius, H., Fechnerian metrics in unidimensional and multidimensional stimulus,Psychological Bulletin and Review, 6, 1999, 239-268.
  • 6Dzhafarov, E. D. and Colonius, H., Fechnerian scaling, probability-distance hypothesis, and Thurstonian link, Technical Report #45, Purdue Mathematical Psychology Program.
  • 7Dzhafarov, E. D. and Colonius, H., Fechnerian Metrics, Looking Back: The End of the 20th Century Psychophysics, P. R. Kileen & W. R. Uttal (eds.), Arizona University Press, Tempe, AZ, 111-116.
  • 8Hwang, T.-Y. and Hu, C.-Y., On a characterization of the gamma distribution: The independence of the sample mean and the sample coefficient of variation, Annals Inst. Statist. Math., 51, 1999, 749-753.
  • 9Lauritzen, S. L., Statistical manifolds, Differential Geometry in Statistical Inferences, IMS Lecture Notes Monograph Series, 10, Hayward California, 1987, 96-163.
  • 10Murray, M. K. and Rice, J. W., Differential Geometry and Statistics, Chapman & Hall, London, 1995.

共引文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部