Evaluation of Shunt Reactive Power Compensation Effect on ATC Using Linear Methods
Evaluation of Shunt Reactive Power Compensation Effect on ATC Using Linear Methods
摘要
Most power transfer studies involve contingencies and multi pattern scenarios that often can only be performed in reasonable time with the use of linear methods. In these works, the effect of reactive power flows in line loading is neglected while formulating the problem for ATC (available transfer capability) calculations. This paper presents the determination of shunt reactive power compensation in the presence of FACTS (flexible AC transmission system) devices like: SSSC (static synchronous series compensator) and UPFC (unified power flow controller) for enhancement of power transfer capability of a power system incorporating the reactive power flows in ATC calculations. In doing so, redistribution of power flow takes place and therefore improves ATC of the system. Studies on a sample 5-bus power system model are carried out to illustrate the effect of shunt compensation along with line flow control.
参考文献21
-
1Available Transfer Capability Definitions and Determination, NERC Transmission Transfer Capability Task Force, North American Electric Reliability Council,1996.
-
2P.W. Sauer, Alternatives for calculating transmission reliability margin (TRM) in available transfer capability (ATC), in: Proceedings of Thirty-First Annual Hawaii International Conference on System Sciences, Kona, Hawaii, Jan. 6-9, 1998, Vol. 3, p. 89.
-
3G.C. Ejebe, J.G. Waight, M.S. Nieto, W.F. Tinney, Fast calculation of linear available transfer capability, IEEE Transactions on Power Systems 15 (3) (2000) 1112-1116.
-
4M. Pavella, D.R. Vega, J. Giri, R.A. Rosales, An integrated scheme for on-line static and transient stability constrained ATC calculations, in: IEEE Power Engineering Society, Summer Meeting, 1999, Vol. 1, pp. 273-276.
-
5S. Repo, Real-time transmission capacity calculation in voltage stability limited power systems, in: Proceedings of Bulk Power System Dynamic Control IV-Restructuring, Santorini, Greece, Aug. 24-28, 1998.
-
6M.H. Gravener, C. Nwankpa, Available transfer capability and first order sensitivity, IEEE Transactions on Power Systems 14 (1999) 512-518.
-
7V. Ajjarapu, C. Christy, The continuation power flow: A tool for steady state voltage stability analysis, IEEE Transactions on Power Systems 7 (1992) 416-423.
-
8G.T. Heydt, Computer Analysis Methods for Power Systems, Macmillan Pub. Co., New York, 1986.
-
9A.J. Wood, B.F. Wollenburg, Power Generation, Operation and Control, Wiley Interscience Publication, New York, 1996.
-
10B. Stott, J.L. Marinho, Linear programming for power system network security applications, IEEE Transactions on Power Apparatus and Systems 98 (3) (1979) 837-848.
-
1刘东.浅析220kV输电工程之电磁环境影响[J].广东科技,2008,17(4):40-41. 被引量:1
-
2李本河.电力系统最优潮流算法[J].贵州电力技术,1999,2(5):5-7.
-
3孙呈志.核电站环境影响评价[J].山东电力技术,1996,23(2):7-12.
-
4王永,宋家骅,彭成君.TCSC与发电机励磁的分散线性最优协调控制[J].吉林电力,2004,32(6):13-15. 被引量:1
-
5李凯,马倩,徐红兵,杨惠雯.储能系统的荷电状态管理策略及其影响评价[J].电力系统自动化,2015,39(8):27-32. 被引量:16
-
6沈道义,杨振睿,王斌.电力系统短期负荷预测方法分析[J].上海电力,2012,25(4):206-210. 被引量:2
-
7陈灵,黄运生,陈学.基于滑模变结构的开关磁阻电机角度控制[J].微计算机信息,2011,27(7):38-40.
-
8泰克公司推出新款精密多相功率分析仪[J].电子测量与仪器学报,2013,27(4):346-346.
-
9唐慧.云计算大数据运行控制技术对智能配电网影响的评价研究[J].电力科学与工程,2016,32(4):32-35. 被引量:8
-
10窦宏博.输变电工程环境影响评价模拟类比及规划可行性研究[J].中小企业管理与科技,2014,0(26):155-156. 被引量:1