摘要
Using a bounding technique, we prove that the fluid model of generalized Jackson network (GJN) with vacations is the same as a GJN without vacations, which means that vacation mechanism does not affect the dynamic performance of GJN under fluid approximation. Furthermore, in order to present the impact of vacation on the performance of GJN, we show that exponential rate of convergence for fluid approximation only holds for large N, which is different from a GJN without vacations. The results on fluid approximation and convergence fate are embodied by the queue length, workload, and busy time processes.
Using a bounding technique, we prove that the fluid model of generalized Jackson network (GJN) with vacations is the same as a GJN without vacations, which means that vacation mechanism does not affect the dynamic performance of GJN under fluid approximation. Furthermore, in order to present the impact of vacation on the performance of GJN, we show that exponential rate of convergence for fluid approximation only holds for large N, which is different from a GJN without vacations. The results on fluid approximation and convergence fate are embodied by the queue length, workload, and busy time processes.