期刊文献+

光纤光栅应变传感器温度补偿系统研究 被引量:8

Study of FBG stain sensor temperature compensation system
下载PDF
导出
摘要 提出了采用BP神经网络算法来实现FBG应变传感器的温度补偿系统,用以改善FBG应变传感器的温度交叉敏感现象。通过计算机程序和实验表明,此方法实现了FBG应变传感器对应变量和温度量的精确分离,较好地改善了温度对传感器造成的非线性干扰,使传感器对应变的测量误差达到10-3数量级。同时,有效地抑制了FBG应变传感器非线性特性的影响。 In order to improve temperature cross-sensitivity phenomenon of the Fiber Bragg Grating strain sensor, the BP neural network method is adopted to realize temperature compensation system of the FBG strain sensor .The results of computer program and experiment illustrate that the method can separate the strain and the temperature exactly in the FBG strain sensor ,solve nonlinear influence problem of the FBG strain sensor brought by temperature well and the measuring error for the strain is about 10-3.The method also restrains the influence of nonlinear effectively in the FBG strain sensor.
作者 樊晓宇
出处 《光通信技术》 CSCD 北大核心 2012年第6期7-9,共3页 Optical Communication Technology
关键词 FBG应变传感器 温度补偿系统 BP神经网络 MATLAB FBG strain sensor temperature compensation system BP neural network MATLAB
  • 相关文献

参考文献4

二级参考文献18

  • 1毕海军,傅圣雪,冯遵成.Lab VIEW设计中压力传感器的RBF神经网络温度补偿[J].中国海洋大学学报(自然科学版),2004,34(6):1041-1044. 被引量:5
  • 2李智勇,童调生,张帆,欧阳红林.神经网络并行进化设计及其在短期电力负荷预测中的应用[J].仪器仪表学报,2005,26(1):88-92. 被引量:1
  • 3伍世虞,徐军.动态模糊神经网络-设计与应用[M].北京:清华大学出版社,2008.
  • 4KAORU H, KAZUHIRO O. The concept of fuzzy flip-flop[J]. IEEE Trans. On Systems, Man, and Cybernetics, 1989, 19(5): 980-997.
  • 5RITA L, LASZLO T K, LASZLO G. Fuzzy flip-flop based neural network as a function approximator[C]. Istanbul:CIMSA2008-IEEE Conference on Computational Intelligence for Measurement Systems and applications Proceedings, 2008: 44-49.
  • 6LOVASSY R, KOCZY L T, GALL. Multilayer Perceptron Implemented by Fuzzy Flip-flops[C]. Hongkong: IEEE World Congress on Computational Intelligence,WCCI 2008:1683-1688.
  • 7OZAWA K, HIROTA K, KOCZY L T, OMORI K. Algebraic fuzzy flip-flop circuits[C]. North Holland: Fuzzy sets and Systems 39/2, 1991: 215-226.
  • 8KOCZY L T, LOVASSY R. Fuzzy flip-flops revisited[C]. Mexico: Proc. IFSA world Conzress, 2007: 643-652.
  • 9KLIR G J, YUAN B. Fuzzy sets and fuzzy logic: Theory and applications [C]. Upper Saddle River: Prentice Hall, NJ1995: 50-88.
  • 10KOCZY L T, LOVASSY R. Fuzzy flip-flops and neural nets[C]. London: IEEE Conference on Fuzzy Systems, 2007:605-610.

共引文献54

同被引文献88

引证文献8

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部